Modal EM algorithm for Gaussian Mixtures
GaussianMixtureMEM.RdA function implementing a fast and efficient Modal EM algorithm for Gaussian mixtures.
Arguments
- data
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations (\(n\)) and columns correspond to variables (\(d\)).
- pro
A \((G \times 1)\) vector of mixing probabilities for a Gaussian mixture of \(G\) components.
- mu
A \((d \times G)\) matrix of component means for a \(d\)-variate Gaussian mixture of \(G\) components.
- sigma
A \((d \times d \times G)\) array of component covariance matrices for a \(d\)-variate Gaussian mixture of \(G\) components.
- control
A list of control parameters:
eps, maxiterNumerical values setting the tolerance and the maximum number of iterations of the MEM algorithm;stepsizeA function controlling the step size of the MEM algorithm;denoiseA logical, ifTRUEa denoising procedure is used when \(d > 1\) to discard all modes whose density is negligible;alphaA numerical value used whendenoise = TRUEfor computing the hypervolume of central \((1-\alpha)100\) region of a multivariate Gaussian;keep.pathA logical controlling whether or not the full paths to modes must be returned.
- ...
Further arguments passed to or from other methods.
Value
Returns a list containing the following elements:
nThe number of input data points.dThe number of variables/features.parametersThe Gaussian mixture parameters.iterThe number of iterations of MEM algorithm.nmodesThe number of modes estimated by the MEM algorithm.modesThe coordinates of modes estimated by MEM algorithm.pathIf requested, the coordinates of full paths to modes for each data point.logdensThe log-density at the estimated modes.logvolThe log-volume used for denoising (if requested).classificationThe modal clustering classification of input data points.
References
Scrucca L. (2021) A fast and efficient Modal EM algorithm for Gaussian mixtures. Statistical Analysis and Data Mining, 14:4, 305–314. doi: 10.1002/sam.11527