Skip to contents

BIC-type criterion for selecting the dimensionality of a dimension reduction subspace.

Usage

msir.bic(object, type = 1, plot = FALSE)

bicDimRed(M, x, nslices, type = 1, tol = sqrt(.Machine$double.eps))

Arguments

object

a 'msir' object

plot

if TRUE a plot of the criterion is shown.

M

the kernel matrix. See details below.

x

the predictors data matrix. See details below.

type

See details below.

nslices

the number of slices. See details below.

tol

a tolerance value

Details

This BIC-type criterion for the determination of the structural dimension selects \(d\) as the maximizer of $$G(d) = l(d) - Penalty(p,d,n)$$ where \(l(d)\) is the log-likelihood for dimensions up to \(d\), \(p\) is the number of predictors, and \(n\) is the sample size. The term \(Penalty(p,d,n)\) is the type of penalty to be used:

  • type = 1: \(Penalty(p,d,n) = -(p-d) \log(n)\)

  • type = 2: \(Penalty(p,d,n) = 0.5 C d (2p-d+1)\), where \(C = (0.5 \log(n) + 0.1 n^(1/3))/2 nslices/n\)

  • type = 3: \(Penalty(p,d,n) = 0.5 C d (2p-d+1)\), where \(C = \log(n) nslices/n\)

  • type = 4 \(Penalty(p,d,n) = 1/2 d \log(n)\)

Value

Returns a list with components:

evalues

eigenvalues

l

log-likelihood

crit

BIC-type criterion

d

selected dimensionality

The msir.bic also assign the above information to the corresponding 'msir' object.

References

Zhu, Miao and Peng (2006) "Sliced Inverse Regression for CDR Space Estimation", JASA.
Zhu, Zhu (2007) "On kernel method for SAVE", Journal of Multivariate Analysis.

Author

Luca Scrucca luca.scrucca@unipg.it

See also

Examples

# 1-dimensional symmetric response curve
n <- 200
p <- 5
b <- as.matrix(c(1,-1,rep(0,p-2)))
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- (0.5 * x%*%b)^2 + 0.1*rnorm(n)
MSIR <- msir(x, y)
msir.bic(MSIR, plot = TRUE)

#> $evalues
#> [1] 0.821883318 0.051396051 0.023648808 0.010248492 0.006365427
#> 
#> $l
#> [1] -22.363739403  -0.162483220  -0.034763465  -0.007233349  -0.002017376
#> 
#> $crit
#>       d=0       d=1       d=2       d=3       d=4 
#>  4.127847 21.030786 15.860189 10.589401  5.296300 
#> 
#> $d
#> [1] 1
#> 
summary(MSIR)
#> -------------------------------------------------- 
#> Model-based SIR 
#> -------------------------------------------------- 
#> 
#> Slices:
#>           1   2   3   4   5     6    
#> GMM       XXX XXI XII XII EEE   EEE  
#> Num.comp. 1   1   1   1   2     2    
#> Num.obs.  33  33  33  33  17|16 13|22
#> 
#> Estimated basis vectors:
#>         Dir1     Dir2      Dir3     Dir4     Dir5
#> x1  0.679798  0.15064  0.051801 -0.48349  0.54501
#> x2 -0.726391  0.21602  0.009353 -0.38069  0.36361
#> x3 -0.029760 -0.25620  0.906773 -0.23989 -0.13257
#> x4  0.074898  0.35320 -0.086282 -0.61391 -0.74048
#> x5 -0.061121 -0.86038 -0.409325 -0.43229  0.06977
#> 
#>                 Dir1      Dir2      Dir3      Dir4       Dir5
#> Eigenvalues  0.82188  0.051396  0.023649  0.010248 6.3654e-03
#> Cum. %      89.96666 95.592680 98.181373 99.303215 1.0000e+02
#> 
#> Structural dimension:
#>                    0       1        2       3       4     
#> BIC-type criterion 4.12785 21.0308* 15.8602 10.5894 5.2963
msir.bic(MSIR, type = 3, plot = TRUE)

#> $evalues
#> [1] 0.821883318 0.051396051 0.023648808 0.010248492 0.006365427
#> 
#> $l
#> [1] -22.363739403  -0.162483220  -0.034763465  -0.007233349  -0.002017376
#> 
#> $crit
#>        d=0        d=1        d=2        d=3        d=4 
#> -22.363739  -1.222147  -1.942158  -2.550426  -2.969075 
#> 
#> $d
#> [1] 1
#> 
summary(MSIR)
#> -------------------------------------------------- 
#> Model-based SIR 
#> -------------------------------------------------- 
#> 
#> Slices:
#>           1   2   3   4   5     6    
#> GMM       XXX XXI XII XII EEE   EEE  
#> Num.comp. 1   1   1   1   2     2    
#> Num.obs.  33  33  33  33  17|16 13|22
#> 
#> Estimated basis vectors:
#>         Dir1     Dir2      Dir3     Dir4     Dir5
#> x1  0.679798  0.15064  0.051801 -0.48349  0.54501
#> x2 -0.726391  0.21602  0.009353 -0.38069  0.36361
#> x3 -0.029760 -0.25620  0.906773 -0.23989 -0.13257
#> x4  0.074898  0.35320 -0.086282 -0.61391 -0.74048
#> x5 -0.061121 -0.86038 -0.409325 -0.43229  0.06977
#> 
#>                 Dir1      Dir2      Dir3      Dir4       Dir5
#> Eigenvalues  0.82188  0.051396  0.023649  0.010248 6.3654e-03
#> Cum. %      89.96666 95.592680 98.181373 99.303215 1.0000e+02
#> 
#> Structural dimension:
#>                    0        1         2        3        4       
#> BIC-type criterion -22.3637 -1.22215* -1.94216 -2.55043 -2.96908