Skip to contents

BIC-type criterion for selecting the dimensionality of a dimension reduction subspace.

Usage

msir.bic(object, type = 1, plot = FALSE)

bicDimRed(M, x, nslices, type = 1, tol = sqrt(.Machine$double.eps))

Arguments

object

a 'msir' object

plot

if TRUE a plot of the criterion is shown.

M

the kernel matrix. See details below.

x

the predictors data matrix. See details below.

type

See details below.

nslices

the number of slices. See details below.

tol

a tolerance value

Details

This BIC-type criterion for the determination of the structural dimension selects \(d\) as the maximizer of $$G(d) = l(d) - Penalty(p,d,n)$$ where \(l(d)\) is the log-likelihood for dimensions up to \(d\), \(p\) is the number of predictors, and \(n\) is the sample size. The term \(Penalty(p,d,n)\) is the type of penalty to be used:

  • type = 1: \(Penalty(p,d,n) = -(p-d) \log(n)\)

  • type = 2: \(Penalty(p,d,n) = 0.5 C d (2p-d+1)\), where \(C = (0.5 \log(n) + 0.1 n^(1/3))/2 nslices/n\)

  • type = 3: \(Penalty(p,d,n) = 0.5 C d (2p-d+1)\), where \(C = \log(n) nslices/n\)

  • type = 4 \(Penalty(p,d,n) = 1/2 d \log(n)\)

Value

Returns a list with components:

evalues

eigenvalues

l

log-likelihood

crit

BIC-type criterion

d

selected dimensionality

The msir.bic also assign the above information to the corresponding 'msir' object.

References

Zhu, Miao and Peng (2006) "Sliced Inverse Regression for CDR Space Estimation", JASA.
Zhu, Zhu (2007) "On kernel method for SAVE", Journal of Multivariate Analysis.

Author

Luca Scrucca luca.scrucca@unipg.it

See also

Examples

# 1-dimensional symmetric response curve
n <- 200
p <- 5
b <- as.matrix(c(1,-1,rep(0,p-2)))
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- (0.5 * x%*%b)^2 + 0.1*rnorm(n)
MSIR <- msir(x, y)
msir.bic(MSIR, plot = TRUE)

#> $evalues
#> [1] 0.774065282 0.266522812 0.184991103 0.044831693 0.003845799
#> 
#> $l
#> [1] -2.472783e+01 -4.648670e+00 -1.623909e+00 -9.832561e-02 -7.376181e-04
#> 
#> $crit
#>       d=0       d=1       d=2       d=3       d=4 
#>  1.763757 16.544599 14.271043 10.498309  5.297580 
#> 
#> $d
#> [1] 1
#> 
summary(MSIR)
#> -------------------------------------------------- 
#> Model-based SIR 
#> -------------------------------------------------- 
#> 
#> Slices:
#>           1   2   3       4   5       6    
#> GMM       XXX XXX EEI     XII EEE     EII  
#> Num.comp. 1   1   3       1   3       2    
#> Num.obs.  33  33  9|13|11 33  13|6|14 21|14
#> 
#> Estimated basis vectors:
#>         Dir1     Dir2      Dir3     Dir4     Dir5
#> x1 -0.718295 -0.37622  0.272783  0.34338 -0.44492
#> x2  0.692883 -0.21553  0.442718  0.34774 -0.35976
#> x3 -0.030005  0.86679 -0.017081  0.42843 -0.21779
#> x4 -0.012651 -0.20525 -0.045749  0.69746  0.69736
#> x5 -0.053895  0.13621  0.852763 -0.30193  0.37266
#> 
#>                 Dir1     Dir2     Dir3      Dir4       Dir5
#> Eigenvalues  0.77407  0.26652  0.18499  0.044832 3.8458e-03
#> Cum. %      60.74642 81.66236 96.17993 99.698193 1.0000e+02
#> 
#> Structural dimension:
#>                    0       1        2      3       4      
#> BIC-type criterion 1.76376 16.5446* 14.271 10.4983 5.29758
msir.bic(MSIR, type = 3, plot = TRUE)

#> $evalues
#> [1] 0.774065282 0.266522812 0.184991103 0.044831693 0.003845799
#> 
#> $l
#> [1] -2.472783e+01 -4.648670e+00 -1.623909e+00 -9.832561e-02 -7.376181e-04
#> 
#> $crit
#>        d=0        d=1        d=2        d=3        d=4 
#> -24.727830  -6.105708  -4.246576  -3.595215  -4.080442 
#> 
#> $d
#> [1] 3
#> 
summary(MSIR)
#> -------------------------------------------------- 
#> Model-based SIR 
#> -------------------------------------------------- 
#> 
#> Slices:
#>           1   2   3       4   5       6    
#> GMM       XXX XXX EEI     XII EEE     EII  
#> Num.comp. 1   1   3       1   3       2    
#> Num.obs.  33  33  9|13|11 33  13|6|14 21|14
#> 
#> Estimated basis vectors:
#>         Dir1     Dir2      Dir3     Dir4     Dir5
#> x1 -0.718295 -0.37622  0.272783  0.34338 -0.44492
#> x2  0.692883 -0.21553  0.442718  0.34774 -0.35976
#> x3 -0.030005  0.86679 -0.017081  0.42843 -0.21779
#> x4 -0.012651 -0.20525 -0.045749  0.69746  0.69736
#> x5 -0.053895  0.13621  0.852763 -0.30193  0.37266
#> 
#>                 Dir1     Dir2     Dir3      Dir4       Dir5
#> Eigenvalues  0.77407  0.26652  0.18499  0.044832 3.8458e-03
#> Cum. %      60.74642 81.66236 96.17993 99.698193 1.0000e+02
#> 
#> Structural dimension:
#>                    0        1        2        3         4       
#> BIC-type criterion -24.7278 -6.10571 -4.24658 -3.59522* -4.08044