
Indicator Variables given Classification
unmap.Rd
Converts a classification into a matrix of indicator variables.
Arguments
- classification
A numeric or character vector. Typically the distinct entries of this vector would represent a classification of observations in a data set.
- groups
A numeric or character vector indicating the groups from which
classification
is drawn. If not supplied, the default is to assumed to be the unique entries of classification.- noise
A single numeric or character value used to indicate the value of
groups
corresponding to noise.- ...
Catches unused arguments in indirect or list calls via
do.call
.
Value
An n by m matrix of (0,1) indicator variables,
where n is the length of classification
and m is
the number of unique values or symbols in classification
.
Columns are labeled by the unique values in classification
,
and the [i,j]
th entry is 1 if classification[i]
is the jth unique value or symbol in sorted order
classification
.
If a noise
value of symbol is designated, the corresponding indicator
variables are relocated to the last column of the matrix.
Examples
z <- unmap(iris[,5])
z[1:5, ]
#> [,1] [,2] [,3]
#> [1,] 1 0 0
#> [2,] 1 0 0
#> [3,] 1 0 0
#> [4,] 1 0 0
#> [5,] 1 0 0
emEst <- me(modelName = "VVV", data = iris[,-5], z = z)
emEst$z[1:5,]
#> [,1] [,2] [,3]
#> [1,] 1 1.340380e-44 1.861339e-34
#> [2,] 1 2.201405e-31 6.676298e-28
#> [3,] 1 1.896748e-36 1.102178e-29
#> [4,] 1 3.488647e-32 6.409600e-26
#> [5,] 1 4.393475e-47 7.745885e-35
map(emEst$z)
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 2
#> [75] 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3
#> [112] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> [149] 3 3