
Function reference
-
Baudry_etal_2010_JCGS_examples - Simulated Example Datasets From Baudry et al. (2010)
-
BrierScore() - Brier score to assess the accuracy of probabilistic predictions
-
EuroUnemployment - Unemployment data for European countries in 2014
-
GvHD - GvHD Dataset
-
Mclust() - Model-Based Clustering
-
MclustBootstrap() - Resampling-based Inference for Gaussian finite mixture models
-
MclustDA() - MclustDA discriminant analysis
-
MclustDR() - Dimension reduction for model-based clustering and classification
-
MclustDRsubsel() - Subset selection for GMMDR directions based on BIC
-
MclustSSC() - MclustSSC semi-supervised classification
-
acidity - Acidity data
-
adjustedRandIndex() - Adjusted Rand Index
-
banknote - Swiss banknotes data
-
bic() - BIC for Parameterized Gaussian Mixture Models
-
cdens() - Component Density for Parameterized MVN Mixture Models
-
cdensE()cdensV()cdensX()cdensEII()cdensVII()cdensEEI()cdensVEI()cdensEVI()cdensVVI()cdensEEE()cdensEEV()cdensVEV()cdensVVV()cdensEVE()cdensEVV()cdensVEE()cdensVVE()cdensXII()cdensXXI()cdensXXX() - Component Density for a Parameterized MVN Mixture Model
-
cdfMclust()quantileMclust() - Cumulative Distribution and Quantiles for a univariate Gaussian mixture distribution
-
chevron - Simulated minefield data
-
clPairs()clPairsLegend() - Pairwise Scatter Plots showing Classification
-
classError() - Classification error
-
classPriorProbs() - Estimation of class prior probabilities by EM algorithm
-
clustCombi() - Combining Gaussian Mixture Components for Clustering
-
clustCombiOptim() - Optimal number of clusters obtained by combining mixture components
-
combMat() - Combining Matrix
-
combiPlot() - Plot Classifications Corresponding to Successive Combined Solutions
-
combiTree() - Tree structure obtained from combining mixture components
-
coordProj() - Coordinate projections of multidimensional data modeled by an MVN mixture.
-
covw() - Weighted means, covariance and scattering matrices conditioning on a weighted matrix
-
crimcoords()summary(<crimcoords>)plot(<crimcoords>) - Discriminant coordinates data projection
-
cross - Simulated Cross Data
-
cvMclustDA() - MclustDA cross-validation
-
decomp2sigma() - Convert mixture component covariances to matrix form
-
defaultPrior() - Default conjugate prior for Gaussian mixtures
-
dens() - Density for Parameterized MVN Mixtures
-
densityMclust() - Density Estimation via Model-Based Clustering
-
densityMclust.diagnostic() - Diagnostic plots for
mclustDensityestimation
-
diabetes - Diabetes Data (flawed)
-
dmvnorm() - Density of multivariate Gaussian distribution
-
dupPartition() - Partition the data by grouping together duplicated data
-
em() - EM algorithm starting with E-step for parameterized Gaussian mixture models
-
emControl() - Set control values for use with the EM algorithm
-
emE()emV()emX()emEII()emVII()emEEI()emVEI()emEVI()emVVI()emEEE()emVEE()emEVE()emVVE()emEEV()emVEV()emEVV()emVVV()emXII()emXXI()emXXX() - EM algorithm starting with E-step for a parameterized Gaussian mixture model
-
entPlot() - Plot Entropy Plots
-
errorBars() - Draw error bars on a plot
-
estep() - E-step for parameterized Gaussian mixture models.
-
estepE()estepV()estepEII()estepVII()estepEEI()estepVEI()estepEVI()estepVVI()estepEEE()estepEEV()estepVEV()estepVVV()estepEVE()estepEVV()estepVEE()estepVVE() - E-step in the EM algorithm for a parameterized Gaussian mixture model.
-
gmmhd()plot(<gmmhd>) - Identifying Connected Components in Gaussian Finite Mixture Models for Clustering
-
hc()as.hclust(<hc>) - Model-based Agglomerative Hierarchical Clustering
-
hcRandomPairs() - Random hierarchical structure
-
hclass() - Classifications from Hierarchical Agglomeration
-
hdrlevels() - Highest Density Region (HDR) Levels
-
hypvol() - Aproximate Hypervolume for Multivariate Data
-
icl() - ICL for an estimated Gaussian Mixture Model
-
imputeData() - Missing data imputation via the mix package
-
imputePairs() - Pairwise Scatter Plots showing Missing Data Imputations
-
logLik(<Mclust>) - Log-Likelihood of a
Mclustobject
-
logLik(<MclustDA>) - Log-Likelihood of a
MclustDAobject
-
logsumexp() - Log sum of exponentials
-
majorityVote() - Majority vote
-
map() - Classification given Probabilities
-
mapClass() - Correspondence between classifications
-
cv.MclustDA()cv1EMtrain()bicEMtrain() - Deprecated Functions in mclust package
-
mclust-packagemclust - Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation
-
mclust.options() - Default values for use with MCLUST package
-
mclust1Dplot() - Plot one-dimensional data modeled by an MVN mixture.
-
mclust2Dplot() - Plot two-dimensional data modelled by an MVN mixture
-
mclustBIC() - BIC for Model-Based Clustering
-
mclustBICupdate() - Update BIC values for parameterized Gaussian mixture models
-
mclustBootstrapLRT()print(<mclustBootstrapLRT>)plot(<mclustBootstrapLRT>) - Bootstrap Likelihood Ratio Test for the Number of Mixture Components
-
mclustICL()summary(<mclustICL>) - ICL Criterion for Model-Based Clustering
-
mclustLoglik() - Log-likelihood from a table of BIC values for parameterized Gaussian mixture models
-
mclustModel() - Best model based on BIC
-
mclustModelNames() - MCLUST Model Names
-
mclustVariance() - Template for variance specification for parameterized Gaussian mixture models
-
me() - EM algorithm starting with M-step for parameterized MVN mixture models
-
me.weighted() - EM algorithm with weights starting with M-step for parameterized Gaussian mixture models
-
meE()meV()meX()meEII()meVII()meEEI()meVEI()meEVI()meVVI()meEEE()meVEE()meEVE()meVVE()meEEV()meVEV()meEVV()meVVV()meXII()meXXI()meXXX() - EM algorithm starting with M-step for a parameterized Gaussian mixture model
-
mstep() - M-step for parameterized Gaussian mixture models
-
mstepE()mstepV()mstepEII()mstepVII()mstepEEI()mstepVEI()mstepEVI()mstepVVI()mstepEEE()mstepEEV()mstepVEV()mstepVVV()mstepEVE()mstepEVV()mstepVEE()mstepVVE() - M-step for a parameterized Gaussian mixture model
-
mvn() - Univariate or Multivariate Normal Fit
-
nMclustParams() - Number of Estimated Parameters in Gaussian Mixture Models
-
nVarParams() - Number of Variance Parameters in Gaussian Mixture Models
-
partconv() - Numeric Encoding of a Partitioning
-
partuniq() - Classifies Data According to Unique Observations
-
plot(<Mclust>) - Plotting method for Mclust model-based clustering
-
plot(<MclustBootstrap>) - Plot of bootstrap distributions for mixture model parameters
-
plot(<MclustDA>) - Plotting method for MclustDA discriminant analysis
-
plot(<MclustDR>) - Plotting method for dimension reduction for model-based clustering and classification
-
plot(<MclustSSC>) - Plotting method for MclustSSC semi-supervised classification
-
plot(<clustCombi>) - Plot Combined Clusterings Results
-
plot(<densityMclust>)plotDensityMclust1()plotDensityMclust2()plotDensityMclustd() - Plots for Mixture-Based Density Estimate
-
plot(<hc>) - Dendrograms for Model-based Agglomerative Hierarchical Clustering
-
plot(<mclustBIC>) - BIC Plot for Model-Based Clustering
-
plot(<mclustICL>) - ICL Plot for Model-Based Clustering
-
predict(<Mclust>) - Cluster multivariate observations by Gaussian finite mixture modeling
-
predict(<MclustDA>) - Classify multivariate observations by Gaussian finite mixture modeling
-
predict(<MclustDR>) - Classify multivariate observations on a dimension reduced subspace by Gaussian finite mixture modeling
-
predict(<MclustSSC>) - Classification of multivariate observations by semi-supervised Gaussian finite mixtures
-
predict(<densityMclust>) - Density estimate of multivariate observations by Gaussian finite mixture modeling
-
priorControl() - Conjugate Prior for Gaussian Mixtures.
-
randProj() - Random projections of multidimensional data modeled by an MVN mixture
-
randomOrthogonalMatrix() - Random orthogonal matrix
-
sigma2decomp() - Convert mixture component covariances to decomposition form.
-
sim() - Simulate from Parameterized MVN Mixture Models
-
simE()simV()simEII()simVII()simEEI()simVEI()simEVI()simVVI()simEEE()simVEE()simEVE()simVVE()simEEV()simVEV()simEVV()simVVV() - Simulate from a Parameterized MVN Mixture Model
-
softmax() - Softmax function
-
summary(<Mclust>)print(<summary.Mclust>) - Summarizing Gaussian Finite Mixture Model Fits
-
summary(<MclustBootstrap>) - Summary Function for Bootstrap Inference for Gaussian Finite Mixture Models
-
summary(<MclustDA>)print(<summary.MclustDA>) - Summarizing discriminant analysis based on Gaussian finite mixture modeling
-
summary(<MclustDR>)print(<summary.MclustDR>) - Summarizing dimension reduction method for model-based clustering and classification
-
summary(<MclustSSC>)print(<summary.MclustSSC>) - Summarizing semi-supervised classification model based on Gaussian finite mixtures
-
summary(<mclustBIC>) - Summary function for model-based clustering via BIC
-
surfacePlot() - Density or uncertainty surface for bivariate mixtures
-
thyroid - UCI Thyroid Gland Data
-
uncerPlot() - Uncertainty Plot for Model-Based Clustering
-
unmap() - Indicator Variables given Classification
-
wdbc - UCI Wisconsin Diagnostic Breast Cancer Data
-
wreath - Data Simulated from a 14-Component Mixture