Function reference
-
Baudry_etal_2010_JCGS_examples
- Simulated Example Datasets From Baudry et al. (2010)
-
BrierScore()
- Brier score to assess the accuracy of probabilistic predictions
-
EuroUnemployment
- Unemployment data for European countries in 2014
-
GvHD
- GvHD Dataset
-
Mclust()
- Model-Based Clustering
-
MclustBootstrap()
- Resampling-based Inference for Gaussian finite mixture models
-
MclustDA()
- MclustDA discriminant analysis
-
MclustDR()
- Dimension reduction for model-based clustering and classification
-
MclustDRsubsel()
- Subset selection for GMMDR directions based on BIC
-
MclustSSC()
- MclustSSC semi-supervised classification
-
acidity
- Acidity data
-
adjustedRandIndex()
- Adjusted Rand Index
-
banknote
- Swiss banknotes data
-
bic()
- BIC for Parameterized Gaussian Mixture Models
-
cdens()
- Component Density for Parameterized MVN Mixture Models
-
cdensE()
cdensV()
cdensX()
cdensEII()
cdensVII()
cdensEEI()
cdensVEI()
cdensEVI()
cdensVVI()
cdensEEE()
cdensEEV()
cdensVEV()
cdensVVV()
cdensEVE()
cdensEVV()
cdensVEE()
cdensVVE()
cdensXII()
cdensXXI()
cdensXXX()
- Component Density for a Parameterized MVN Mixture Model
-
cdfMclust()
quantileMclust()
- Cumulative Distribution and Quantiles for a univariate Gaussian mixture distribution
-
chevron
- Simulated minefield data
-
clPairs()
clPairsLegend()
- Pairwise Scatter Plots showing Classification
-
classError()
- Classification error
-
classPriorProbs()
- Estimation of class prior probabilities by EM algorithm
-
clustCombi()
- Combining Gaussian Mixture Components for Clustering
-
clustCombiOptim()
- Optimal number of clusters obtained by combining mixture components
-
combMat()
- Combining Matrix
-
combiPlot()
- Plot Classifications Corresponding to Successive Combined Solutions
-
combiTree()
- Tree structure obtained from combining mixture components
-
coordProj()
- Coordinate projections of multidimensional data modeled by an MVN mixture.
-
covw()
- Weighted means, covariance and scattering matrices conditioning on a weighted matrix
-
crimcoords()
summary(<crimcoords>)
plot(<crimcoords>)
- Discriminant coordinates data projection
-
cross
- Simulated Cross Data
-
cvMclustDA()
- MclustDA cross-validation
-
decomp2sigma()
- Convert mixture component covariances to matrix form
-
defaultPrior()
- Default conjugate prior for Gaussian mixtures
-
dens()
- Density for Parameterized MVN Mixtures
-
densityMclust()
- Density Estimation via Model-Based Clustering
-
densityMclust.diagnostic()
- Diagnostic plots for
mclustDensity
estimation
-
diabetes
- Diabetes Data (flawed)
-
dmvnorm()
- Density of multivariate Gaussian distribution
-
dupPartition()
- Partition the data by grouping together duplicated data
-
em()
- EM algorithm starting with E-step for parameterized Gaussian mixture models
-
emControl()
- Set control values for use with the EM algorithm
-
emE()
emV()
emX()
emEII()
emVII()
emEEI()
emVEI()
emEVI()
emVVI()
emEEE()
emVEE()
emEVE()
emVVE()
emEEV()
emVEV()
emEVV()
emVVV()
emXII()
emXXI()
emXXX()
- EM algorithm starting with E-step for a parameterized Gaussian mixture model
-
entPlot()
- Plot Entropy Plots
-
errorBars()
- Draw error bars on a plot
-
estep()
- E-step for parameterized Gaussian mixture models.
-
estepE()
estepV()
estepEII()
estepVII()
estepEEI()
estepVEI()
estepEVI()
estepVVI()
estepEEE()
estepEEV()
estepVEV()
estepVVV()
estepEVE()
estepEVV()
estepVEE()
estepVVE()
- E-step in the EM algorithm for a parameterized Gaussian mixture model.
-
gmmhd()
plot(<gmmhd>)
- Identifying Connected Components in Gaussian Finite Mixture Models for Clustering
-
hc()
as.hclust(<hc>)
- Model-based Agglomerative Hierarchical Clustering
-
hcRandomPairs()
- Random hierarchical structure
-
hclass()
- Classifications from Hierarchical Agglomeration
-
hdrlevels()
- Highest Density Region (HDR) Levels
-
hypvol()
- Aproximate Hypervolume for Multivariate Data
-
icl()
- ICL for an estimated Gaussian Mixture Model
-
imputeData()
- Missing data imputation via the mix package
-
imputePairs()
- Pairwise Scatter Plots showing Missing Data Imputations
-
logLik(<Mclust>)
- Log-Likelihood of a
Mclust
object
-
logLik(<MclustDA>)
- Log-Likelihood of a
MclustDA
object
-
logsumexp()
- Log sum of exponentials
-
majorityVote()
- Majority vote
-
map()
- Classification given Probabilities
-
mapClass()
- Correspondence between classifications
-
cv.MclustDA()
cv1EMtrain()
bicEMtrain()
- Deprecated Functions in mclust package
-
mclust-package
mclust
- Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation
-
mclust.options()
- Default values for use with MCLUST package
-
mclust1Dplot()
- Plot one-dimensional data modeled by an MVN mixture.
-
mclust2Dplot()
- Plot two-dimensional data modelled by an MVN mixture
-
mclustBIC()
- BIC for Model-Based Clustering
-
mclustBICupdate()
- Update BIC values for parameterized Gaussian mixture models
-
mclustBootstrapLRT()
print(<mclustBootstrapLRT>)
plot(<mclustBootstrapLRT>)
- Bootstrap Likelihood Ratio Test for the Number of Mixture Components
-
mclustICL()
summary(<mclustICL>)
- ICL Criterion for Model-Based Clustering
-
mclustLoglik()
- Log-likelihood from a table of BIC values for parameterized Gaussian mixture models
-
mclustModel()
- Best model based on BIC
-
mclustModelNames()
- MCLUST Model Names
-
mclustVariance()
- Template for variance specification for parameterized Gaussian mixture models
-
me()
- EM algorithm starting with M-step for parameterized MVN mixture models
-
me.weighted()
- EM algorithm with weights starting with M-step for parameterized Gaussian mixture models
-
meE()
meV()
meX()
meEII()
meVII()
meEEI()
meVEI()
meEVI()
meVVI()
meEEE()
meVEE()
meEVE()
meVVE()
meEEV()
meVEV()
meEVV()
meVVV()
meXII()
meXXI()
meXXX()
- EM algorithm starting with M-step for a parameterized Gaussian mixture model
-
mstep()
- M-step for parameterized Gaussian mixture models
-
mstepE()
mstepV()
mstepEII()
mstepVII()
mstepEEI()
mstepVEI()
mstepEVI()
mstepVVI()
mstepEEE()
mstepEEV()
mstepVEV()
mstepVVV()
mstepEVE()
mstepEVV()
mstepVEE()
mstepVVE()
- M-step for a parameterized Gaussian mixture model
-
mvn()
- Univariate or Multivariate Normal Fit
-
nMclustParams()
- Number of Estimated Parameters in Gaussian Mixture Models
-
nVarParams()
- Number of Variance Parameters in Gaussian Mixture Models
-
partconv()
- Numeric Encoding of a Partitioning
-
partuniq()
- Classifies Data According to Unique Observations
-
plot(<Mclust>)
- Plotting method for Mclust model-based clustering
-
plot(<MclustBootstrap>)
- Plot of bootstrap distributions for mixture model parameters
-
plot(<MclustDA>)
- Plotting method for MclustDA discriminant analysis
-
plot(<MclustDR>)
- Plotting method for dimension reduction for model-based clustering and classification
-
plot(<MclustSSC>)
- Plotting method for MclustSSC semi-supervised classification
-
plot(<clustCombi>)
- Plot Combined Clusterings Results
-
plot(<densityMclust>)
plotDensityMclust1()
plotDensityMclust2()
plotDensityMclustd()
- Plots for Mixture-Based Density Estimate
-
plot(<hc>)
- Dendrograms for Model-based Agglomerative Hierarchical Clustering
-
plot(<mclustBIC>)
- BIC Plot for Model-Based Clustering
-
plot(<mclustICL>)
- ICL Plot for Model-Based Clustering
-
predict(<Mclust>)
- Cluster multivariate observations by Gaussian finite mixture modeling
-
predict(<MclustDA>)
- Classify multivariate observations by Gaussian finite mixture modeling
-
predict(<MclustDR>)
- Classify multivariate observations on a dimension reduced subspace by Gaussian finite mixture modeling
-
predict(<MclustSSC>)
- Classification of multivariate observations by semi-supervised Gaussian finite mixtures
-
predict(<densityMclust>)
- Density estimate of multivariate observations by Gaussian finite mixture modeling
-
priorControl()
- Conjugate Prior for Gaussian Mixtures.
-
randProj()
- Random projections of multidimensional data modeled by an MVN mixture
-
randomOrthogonalMatrix()
- Random orthogonal matrix
-
sigma2decomp()
- Convert mixture component covariances to decomposition form.
-
sim()
- Simulate from Parameterized MVN Mixture Models
-
simE()
simV()
simEII()
simVII()
simEEI()
simVEI()
simEVI()
simVVI()
simEEE()
simVEE()
simEVE()
simVVE()
simEEV()
simVEV()
simEVV()
simVVV()
- Simulate from a Parameterized MVN Mixture Model
-
softmax()
- Softmax function
-
summary(<Mclust>)
print(<summary.Mclust>)
- Summarizing Gaussian Finite Mixture Model Fits
-
summary(<MclustBootstrap>)
- Summary Function for Bootstrap Inference for Gaussian Finite Mixture Models
-
summary(<MclustDA>)
print(<summary.MclustDA>)
- Summarizing discriminant analysis based on Gaussian finite mixture modeling
-
summary(<MclustDR>)
print(<summary.MclustDR>)
- Summarizing dimension reduction method for model-based clustering and classification
-
summary(<MclustSSC>)
print(<summary.MclustSSC>)
- Summarizing semi-supervised classification model based on Gaussian finite mixtures
-
summary(<mclustBIC>)
- Summary function for model-based clustering via BIC
-
surfacePlot()
- Density or uncertainty surface for bivariate mixtures
-
thyroid
- UCI Thyroid Gland Data
-
uncerPlot()
- Uncertainty Plot for Model-Based Clustering
-
unmap()
- Indicator Variables given Classification
-
wdbc
- UCI Wisconsin Diagnostic Breast Cancer Data
-
wreath
- Data Simulated from a 14-Component Mixture