Plotting method for modal-clustering based on Gaussian Mixtures
plot.MclustMEM.Rd
Plots for MclustMEM
objects.
Usage
# S3 method for MclustMEM
plot(x, dimens = NULL, addDensity = TRUE, addPoints = TRUE,
symbols = NULL, colors = NULL, cex = NULL,
labels = NULL, cex.labels = NULL, gap = 0.2,
...)
Arguments
- x
An object of class
"densityMclustBounded"
obtained from a call todensityMclustBounded
.- dimens
A vector of integers specifying the dimensions of the coordinate projections.
- addDensity
A logical indicating whether or not to add density estimates to the plot.
- addPoints
A logical indicating whether or not to add data points to the plot.
- symbols
Either an integer or character vector assigning a plotting symbol to each unique class in
classification
. Elements insymbols
correspond to classes in order of appearance in the sequence of observations (the order used by the functionunique
). The default is given bymclust.options("classPlotSymbols")
.- colors
Either an integer or character vector assigning a color to each unique class in
classification
. Elements incolors
correspond to classes in order of appearance in the sequence of observations (the order used by the functionunique
). The default is given bymclust.options("classPlotColors")
.- cex
A vector of numerical values specifying the size of the plotting symbol for each unique class in
classification
. By defaultcex = 1
for all classes is used.- labels
A vector of character strings for labelling the variables. The default is to use the column dimension names of
data
.- cex.labels
A numerical value specifying the size of the text labels.
- gap
A numerical argument specifying the distance between subplots (see
pairs
).- ...
Further arguments passed to or from other methods.
References
Scrucca L. (2021) A fast and efficient Modal EM algorithm for Gaussian mixtures. Statistical Analysis and Data Mining, 14:4, 305–314. https://doi.org/10.1002/sam.11527
Examples
# \donttest{
# 1-d example
GMM <- Mclust(iris$Petal.Length)
MEM <- MclustMEM(GMM)
plot(MEM)
# 2-d example
data(Baudry_etal_2010_JCGS_examples)
GMM <- Mclust(ex4.1)
MEM <- MclustMEM(GMM)
plot(MEM)
plot(MEM, addPoints = FALSE)
plot(MEM, addDensity = FALSE)
# 3-d example
GMM <- Mclust(ex4.4.2)
MEM <- MclustMEM(GMM)
plot(MEM)
plot(MEM, addPoints = FALSE)
plot(MEM, addDensity = FALSE)
# }