Default values for ppgmmga package
ppgmmga.options.Rd
Set or retrieve default values to be used by the ppgmmga package.
Arguments
- ...
A single character vector, or a named list with components. In the one argument case, the form
name = value
can be used to change a single option. In the multiple arguments case, the formlist(name1 = value1, name2 = value2)
can be used to change several arguments. If no arguments are provided, then the function returns all the current options. For the available options see the Details section below.
Details
This function can be used to set or retrieve the values to be used by the ppgmmga package.
The function globally sets the arguments for the current session of R. The default options are restored with a new R session. To temporarily change the options for a single call to ppgmmga
function, look at options
argument in ppgmmga
.
Available options are:
modelNames
A string specifying the GMM to fit. See
mclustModelNames
for the available models.G
An integer value or a vector of integer values specifying the number of mixture components. If more than a single value is provided, the best model is selected using the BIC criterion. By default
G = 1:9
.initMclust
A string specifying the type of initialisation to be used for the EM algorithm. See
mclust.options
for more details.popSize
The GA population size. By default
popSize = 100
.pcrossover
The probability of crossover. By default
pcrossover = 0.8
.pmutation
The probability of mutation. By default
pmutation = 0.1
.maxiter
An integer value specifying the maximum number of iterations before stopping the GA. By default
maxiter = 1000
.run
An integer value indicating the number of generations without improvment in the best value of fitness fuction.
run = 100
.selection
An
R
function performing the selection genetic operator. Seega_Selection
for details. By defaultselection = gareal_lsSelection
.crossover
An
R
function performing the crossover genetic operator. Seega_Crossover
for details. By defaultcrossover = gareal_laCrossover
.mutation
An
R
function performing the mutation genetic operator. Seega_Mutation
for details. By defaultmutation = gareal_raMutation
.parallel
A logical value specifying whether or not GA should be run in parallel. By default
parallel = FALSE
.numIslands
An integer value specifying the number of islands to be used in the Island Genetic Algorithm. By default
numIslands = 4
.migrationRate
A value specifying the fraction of migration between islands. By default
migrationRate = 0.1
.migrationInterval
An integer values specifying the number of generations to run before each migration. By default
migrationInterval = 10
.optim
A logical value specifying whether or not a local search should be performed. By default
optim = TRUE
.optimPoptim
A value specifying the probability a local search is performed at each GA generation. By default
optimPoptim = 0.05
.optimPressel
A value in \([0,1]\) specifying the pressure selection. Values close to 1 tend to assign higher selection probabilities to solutions with higher fitness, whereas values close to 0 tend to assign equal selection probability to any solution. By default
optimPressel = 0.5
.optimMethod
A string specifying the general-purpose optimisation method to be used for local search. See
optim
for the available algorithms. By defaultoptimMethod = "L-BFGS-B"
.optimMaxit
An integer value specifying the number of iterations for the local search algorithm. By default
optimMaxit = 100
.orth
A string specifying the method employed to orthogonalise the matrix basis. Available methods are the QR decomposition
"QR"
, and the Singular Value Decomposition"SVD"
. By defaultorth = "QR"
.classPlotSymbols
A vector whose entries are either integers corresponding to graphics symbols or single characters for indicating classifications when plotting data. Classes are assigned symbols in the given order.
classPlotColors
A vector whose entries correspond to colors for indicating classifications when plotting data. Classes are assigned colors in the given order.
For more details about options related to Gaussian mixture modelling see densityMclust
, and for those related to genetic algorithms see ga
and gaisl
.
Author
Serafini A. srf.alessio@gmail.com
Scrucca L. luca.scrucca@unipg.it
References
Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016) mclust 5: Clustering, classification and density estimation using gaussian finite mixture models. The R journal, 8(1), 205-233. https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf
Scrucca, L. (2013) GA: A Package for Genetic Algorithms in R. Journal of Statistical Software, 53(4), 1-37. http://www.jstatsoft.org/v53/i04/
Scrucca, L. (2017) On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution. The R Journal, 9/1, 187-206. https://journal.r-project.org/archive/2017/RJ-2017-008
Scrucca, L. and Serafini, A. (2019) Projection pursuit based on Gaussian mixtures and evolutionary algorithms. Journal of Computational and Graphical Statistics, 28:4, 847–860. DOI: 10.1080/10618600.2019.1598871