BIC for Parameterized Gaussian Mixture Models
bic.Rd
Computes the BIC (Bayesian Information Criterion) for parameterized mixture models given the loglikelihood, the dimension of the data, and number of mixture components in the model.
Arguments
- modelName
A character string indicating the model. The help file for
mclustModelNames
describes the available models.- loglik
The log-likelihood for a data set with respect to the Gaussian mixture model specified in the
modelName
argument.- n
The number of observations in the data used to compute
loglik
.- d
The dimension of the data used to compute
loglik
.- G
The number of components in the Gaussian mixture model used to compute
loglik
.- noise
A logical variable indicating whether or not the model includes an optional Poisson noise component. The default is to assume no noise component.
- equalPro
A logical variable indicating whether or not the components in the model are assumed to be present in equal proportion. The default is to assume unequal mixing proportions.
- ...
Catches unused arguments in an indirect or list call via
do.call
.
Examples
# \donttest{
n <- nrow(iris)
d <- ncol(iris)-1
G <- 3
emEst <- me(modelName="VVI", data=iris[,-5], unmap(iris[,5]))
names(emEst)
#> [1] "modelName" "prior" "n" "d" "G"
#> [6] "z" "parameters" "control" "loglik"
args(bic)
#> function (modelName, loglik, n, d, G, noise = FALSE, equalPro = FALSE,
#> ...)
#> NULL
bic(modelName="VVI", loglik=emEst$loglik, n=n, d=d, G=G)
#> [1] -744.0273
# do.call("bic", emEst) ## alternative call
# }