Skip to contents

Summary of bootstrap distribution for the parameters of a Gaussian mixture model providing either standard errors or percentile bootstrap confidence intervals.

Usage

# S3 method for class 'MclustBootstrap'
summary(object, what = c("se", "ci", "ave"), conf.level = 0.95, ...)

Arguments

object

An object of class 'MclustBootstrap' as returned by MclustBootstrap.

what

A character string: "se" for the standard errors; "ci" for the confidence intervals; "ave" for the averages.

conf.level

A value specifying the confidence level of the interval.

...

Further arguments passed to or from other methods.

Details

For details about the procedure used to obtain the bootstrap distribution see MclustBootstrap.

See also

Examples

# \donttest{
data(diabetes)
X = diabetes[,-1]
modClust = Mclust(X) 
bootClust = MclustBootstrap(modClust)
summary(bootClust, what = "se")
#> ---------------------------------------------------------- 
#> Resampling standard errors 
#> ---------------------------------------------------------- 
#> Model                      = VVV 
#> Num. of mixture components = 3 
#> Replications               = 999 
#> Type                       = nonparametric bootstrap 
#> 
#> Mixing probabilities:
#>          1          2          3 
#> 0.05280465 0.05190581 0.03553151 
#> 
#> Means:
#>                1        2        3
#> glucose 1.059243  3.29787 16.83258
#> insulin 7.643779 28.60073 65.85498
#> sspg    7.876315 30.68940 10.19245
#> 
#> Variances:
#> [,,1]
#>          glucose   insulin      sspg
#> glucose 11.26049  51.40973  51.09059
#> insulin 51.40973 510.55539 411.22677
#> sspg    51.09059 411.22677 629.55650
#> [,,2]
#>           glucose   insulin      sspg
#> glucose  63.64902  605.8844  435.5397
#> insulin 605.88438 7193.1861 3138.5999
#> sspg    435.53973 3138.5999 6743.2324
#> [,,3]
#>           glucose   insulin      sspg
#> glucose  994.6153  4162.820  644.5863
#> insulin 4162.8201 19343.897 2521.2694
#> sspg     644.5863  2521.269  480.5518
summary(bootClust, what = "ci")
#> ---------------------------------------------------------- 
#> Resampling confidence intervals 
#> ---------------------------------------------------------- 
#> Model                      = VVV 
#> Num. of mixture components = 3 
#> Replications               = 999 
#> Type                       = nonparametric bootstrap 
#> Confidence level           = 0.95 
#> 
#> Mixing probabilities:
#>               1         2         3
#> 2.5%  0.4458369 0.1560133 0.1321350
#> 97.5% 0.6510765 0.3583681 0.2688954
#> 
#> Means:
#> [,,1]
#>        glucose  insulin     sspg
#> 2.5%  89.06346 345.2369 150.4931
#> 97.5% 93.29893 375.9444 182.1779
#> [,,2]
#>        glucose  insulin     sspg
#> 2.5%   99.0615 451.4019 259.9782
#> 97.5% 112.1140 557.2159 380.1439
#> [,,3]
#>        glucose   insulin      sspg
#> 2.5%  198.1075  969.0117  62.12093
#> 97.5% 262.3512 1223.5174 101.47840
#> 
#> Variances:
#> [,,1]
#>        glucose  insulin     sspg
#> 2.5%  37.90691 1261.326 1514.129
#> 97.5% 80.82847 3236.033 4086.728
#> [,,2]
#>         glucose   insulin     sspg
#> 2.5%   90.29277  3487.952 12445.55
#> 97.5% 355.76032 30435.133 38721.76
#> [,,3]
#>        glucose  insulin     sspg
#> 2.5%  3330.902  46411.4 1322.555
#> 97.5% 7137.835 121884.5 3225.706

data(acidity)
modDens = densityMclust(acidity, plot = FALSE)
modDens = MclustBootstrap(modDens)
summary(modDens, what = "se")
#> ---------------------------------------------------------- 
#> Resampling standard errors 
#> ---------------------------------------------------------- 
#> Model                      = E 
#> Num. of mixture components = 2 
#> Replications               = 999 
#> Type                       = nonparametric bootstrap 
#> 
#> Mixing probabilities:
#>          1          2 
#> 0.04039717 0.04039717 
#> 
#> Means:
#>          1          2 
#> 0.04579252 0.06896503 
#> 
#> Variances:
#>          1          2 
#> 0.02343412 0.02343412 
summary(modDens, what = "ci")
#> ---------------------------------------------------------- 
#> Resampling confidence intervals 
#> ---------------------------------------------------------- 
#> Model                      = E 
#> Num. of mixture components = 2 
#> Replications               = 999 
#> Type                       = nonparametric bootstrap 
#> Confidence level           = 0.95 
#> 
#> Mixing probabilities:
#>               1         2
#> 2.5%  0.5410029 0.3008525
#> 97.5% 0.6991475 0.4589971
#> 
#> Means:
#>              1        2
#> 2.5%  4.282648 6.186636
#> 97.5% 4.458571 6.459078
#> 
#> Variances:
#>               1         2
#> 2.5%  0.1404628 0.1404628
#> 97.5% 0.2325106 0.2325106
# }