Gaussian mixture-based estimation of entropy
EntropyGMM.RdCompute an estimate of the (differential) entropy from a Gaussian Mixture Model (GMM) fitted using the mclust package.
Usage
EntropyGMM(object, ...)
# S3 method for class 'densityMclust'
EntropyGMM(object, ...)
# S3 method for class 'densityMclustBounded'
EntropyGMM(object, ...)
# S3 method for class 'Mclust'
EntropyGMM(object, ...)
# S3 method for class 'data.frame'
EntropyGMM(object, ...)
# S3 method for class 'matrix'
EntropyGMM(object, ...)
EntropyGauss(sigma)
nats2bits(x)
bits2nats(x)Arguments
- object
An object of class
'Mclust','densityMclust', or'densityMclustBounded', obtained by fitting a Gaussian mixture via, respectively,mclust::Mclust(),mclust::densityMclust(), anddensityMclustBounded().If a
matrixordata.frameis provided as input, a GMM using the provided data is estimated preliminary to computing the entropy. In this case further arguments can be provided to control the fitted model (e.g. number of mixture components and/or covariances decomposition).- ...
Further arguments passed to or from other methods.
- sigma
A symmetric covariance matrix.
- x
A vector of values.
Value
EntropyGMM()returns an estimate of the entropy based on a estimated Gaussian mixture model (GMM) fitted using the mclust package. If a matrix of data values is provided, a GMM is preliminary fitted to the data and then the entropy computed.EntropyGauss()returns the entropy for a multivariate Gaussian distribution with covariance matrixsigma.nats2bits()andbits2nats()convert input values in nats to bits, and viceversa. Information-theoretic quantities have different units depending on the base of the logarithm used: nats are expressed in base-2 logarithms, whereas bits in natural logarithms.
Details
For more details see
vignette("mclustAddons")
References
Robin S. and Scrucca L. (2023) Mixture-based estimation of entropy. Computational Statistics & Data Analysis, 177, 107582. doi:10.1016/j.csda.2022.107582