Coordinate projections of multidimensional data modeled by an MVN mixture.
coordProj.Rd
Plots coordinate projections given multidimensional data and parameters of an MVN mixture model for the data.
Usage
coordProj(data, dimens = c(1,2), parameters = NULL, z = NULL,
classification = NULL, truth = NULL, uncertainty = NULL,
what = c("classification", "error", "uncertainty"),
addEllipses = TRUE, fillEllipses = mclust.options("fillEllipses"),
symbols = NULL, colors = NULL, scale = FALSE,
xlim = NULL, ylim = NULL, cex = 1, PCH = ".", main = FALSE, ...)
Arguments
- data
A numeric matrix or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
- dimens
A vector of length 2 giving the integer dimensions of the desired coordinate projections. The default is
c(1,2)
, in which the first dimension is plotted against the second.- parameters
A named list giving the parameters of an MCLUST model, used to produce superimposing ellipses on the plot. The relevant components are as follows:
mean
The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model.
variance
A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for
mclustVariance
for details.
- z
A matrix in which the
[i,k]
th entry gives the probability of observation i belonging to the kth class. Used to computeclassification
anduncertainty
if those arguments aren't available.- classification
A numeric or character vector representing a classification of observations (rows) of
data
. If present argumentz
will be ignored.- truth
A numeric or character vector giving a known classification of each data point. If
classification
orz
is also present, this is used for displaying classification errors.- uncertainty
A numeric vector of values in (0,1) giving the uncertainty of each data point. If present argument
z
will be ignored.- what
Choose from one of the following three options:
"classification"
(default),"error"
,"uncertainty"
.- addEllipses
A logical indicating whether or not to add ellipses with axes corresponding to the within-cluster covariances in case of
"classification"
or"uncertainty"
plots.- fillEllipses
A logical specifying whether or not to fill ellipses with transparent colors when
addEllipses = TRUE
.- symbols
Either an integer or character vector assigning a plotting symbol to each unique class in
classification
. Elements incolors
correspond to classes in order of appearance in the sequence of observations (the order used by the functionunique
). The default is given bymclust.options("classPlotSymbols")
.- colors
Either an integer or character vector assigning a color to each unique class in
classification
. Elements incolors
correspond to classes in order of appearance in the sequence of observations (the order used by the functionunique
). The default is given bymclust.options("classPlotColors")
.- scale
A logical variable indicating whether or not the two chosen dimensions should be plotted on the same scale, and thus preserve the shape of the distribution. Default:
scale=FALSE
- xlim, ylim
Arguments specifying bounds for the ordinate, abscissa of the plot. This may be useful for when comparing plots.
- cex
A numerical value specifying the size of the plotting symbols. The default value is 1.
- PCH
An argument specifying the symbol to be used when a classification has not been specified for the data. The default value is a small dot ".".
- main
A logical variable or
NULL
indicating whether or not to add a title to the plot identifying the dimensions used.- ...
Other graphics parameters.
Value
A plot showing a two-dimensional coordinate projection of the data, together with the location of the mixture components, classification, uncertainty, and/or classification errors.
Examples
# \donttest{
est <- meVVV(iris[,-5], unmap(iris[,5]))
par(pty = "s", mfrow = c(1,1))
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
what = "classification", main = TRUE)
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
truth = iris[,5], what = "error", main = TRUE)
coordProj(iris[,-5], dimens=c(2,3), parameters = est$parameters, z = est$z,
what = "uncertainty", main = TRUE)
# }