
Plot one-dimensional data modeled by an MVN mixture.
mclust1Dplot.RdPlot one-dimensional data given parameters of an MVN mixture model for the data.
Usage
mclust1Dplot(data, parameters = NULL, z = NULL, 
             classification = NULL, truth = NULL, uncertainty = NULL, 
             what = c("classification", "density", "error", "uncertainty"),
             symbols = NULL, colors = NULL, ngrid = length(data), 
             xlab = NULL, ylab = NULL, 
             xlim = NULL, ylim = NULL,
             cex = 1, main = FALSE, ...)Arguments
- data
- A numeric vector of observations. Categorical variables are not allowed. 
- parameters
- A named list giving the parameters of an MCLUST model, used to produce superimposing ellipses on the plot. The relevant components are as follows: - pro
- Mixing proportions for the components of the mixture. There should one more mixing proportion than the number of Gaussian components if the mixture model includes a Poisson noise term. 
- mean
- The mean for each component. If there is more than one component, this is a matrix whose kth column is the mean of the kth component of the mixture model. 
- variance
- A list of variance parameters for the model. The components of this list depend on the model specification. See the help file for - mclustVariancefor details.
 
- z
- A matrix in which the - [i,k]th entry gives the probability of observation i belonging to the kth class. Used to compute- classificationand- uncertaintyif those arguments aren't available.
- classification
- A numeric or character vector representing a classification of observations (rows) of - data. If present argument- zwill be ignored.
- truth
- A numeric or character vector giving a known classification of each data point. If - classificationor- zis also present, this is used for displaying classification errors.
- uncertainty
- A numeric vector of values in (0,1) giving the uncertainty of each data point. If present argument - zwill be ignored.
- what
- Choose from one of the following options: - "classification"(default),- "density",- "error",- "uncertainty".
- symbols
- Either an integer or character vector assigning a plotting symbol to each unique class - classification. Elements in- symbolscorrespond to classes in- classificationin order of appearance in the observations (the order used by the function- unique). The default is to use a single plotting symbol |. Classes are delineated by showing them in separate lines above the whole of the data.
- colors
- Either an integer or character vector assigning a color to each unique class - classification. Elements in- colorscorrespond to classes in order of appearance in the observations (the order used by the function- unique). The default is given is- mclust.options("classPlotColors").
- ngrid
- Number of grid points to use for density computation over the interval spanned by the data. The default is the length of the data set. 
- xlab, ylab
- An argument specifying a label for the axes. 
- xlim, ylim
- An argument specifying bounds of the plot. This may be useful for when comparing plots. 
- cex
- An argument specifying the size of the plotting symbols. The default value is 1. 
- main
- A logical variable or - NULLindicating whether or not to add a title to the plot identifying the dimensions used.
- ...
- Other graphics parameters. 
Value
A plot showing location of the mixture components, classification, uncertainty, density and/or classification errors. Points in the different classes are shown in separated levels above the whole of the data.
Examples
# \donttest{
n <- 250 ## create artificial data
set.seed(1)
y <- c(rnorm(n,-5), rnorm(n,0), rnorm(n,5))
yclass <- c(rep(1,n), rep(2,n), rep(3,n))
yModel <- Mclust(y)
mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, 
             what = "classification")
 mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, 
             what = "error", truth = yclass)
mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, 
             what = "error", truth = yclass)
 mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, 
             what = "density")
mclust1Dplot(y, parameters = yModel$parameters, z = yModel$z, 
             what = "density")
 mclust1Dplot(y, z = yModel$z, parameters = yModel$parameters,
            what = "uncertainty")
mclust1Dplot(y, z = yModel$z, parameters = yModel$parameters,
            what = "uncertainty")
 # }
# }