References

Allard, Denis, and Chris Fraley. 1997. “Nonparametric Maximum Likelihood Estimation of Features in Spatial Point Processes Using Voronoı̈ Tessellation.” Journal of the American Statistical Association 92 (440): 1485–93.
Alpaydin, Ethem. 2014. Introduction to Machine Learning. 3rd ed. MIT Press.
Altman, Edward I. 1968. “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy.” The Journal of Finance 23 (4): 589–609.
Ameijeiras-Alonso, Jose, Rosa M. Crujeiras, Alberto Rodríguez-Casal, The R Core Team 1996-2012, and The R Foundation 2005. 2021. multimode: Mode Testing and Exploring. https://CRAN.R-project.org/package=multimode.
Anderson, E. 1935. “The Irises of the Gaspé Peninsula.” Bulletin of the American Iris Society 59: 2–5.
Anderson, T. W., I. Olkin, and L. G. Underhill. 1987. “Generation of Random Orthogonal Matrices.” SIAM Journal on Scientific and Statistical Computing 8 (4): 625–29.
Arbel, Julyan, Guillaume Kon Kam King, Antonio Lijoi, Luis Nieto-Barajas, and Igor Prünster. 2021. BNPdensity: Bayesian Nonparametric Mixture Modelling in R.” Australian & New Zealand Journal of Statistics 63 (3): 542–64.
Azzalini, A, and A W Bowman. 1990. “A Look at Some Data on the Old Faithful Geyser.” Applied Statistics 39 (3): 357–65.
Azzalini, Adelchi, and Giovanna Menardi. 2014. “Clustering via Nonparametric Density Estimation: The R Package pdfCluster.” Journal of Statistical Software 57 (11): 1–26. http://www.jstatsoft.org/v57/i11/.
Banfield, J., and Adrian E. Raftery. 1993. “Model-Based Gaussian and Non-Gaussian Clustering.” Biometrics 49: 803–21.
Barrios, Ernesto, Guillaume Kon Kam King, Antonio Lijoi, Luis E. Nieto-Barajas, and Igor Prünster. 2021. BNPdensity: Ferguson-Klass Type Algorithm for Posterior Normalized Random Measures. https://doi.org/10.1111/anzs.12342.
Basford, K E, D R Greenway, G J McLachlan, and D Peel. 1997. “Standard Errors of Fitted Component Means of Normal Mixtures.” Computational Statistics 12 (1): 1–18.
Bates, Stephen, Trevor Hastie, and Robert Tibshirani. 2021. “Cross-Validation: What Does It Estimate and How Well Does It Do It?” arXiv Preprint. https://arxiv.org/abs/2104.00673.
Baudry, J. P., A. E. Raftery, G. Celeux, K. Lo, and R. Gottardo. 2010. “Combining Mixture Components for Clustering.” Journal of Computational and Graphical Statistics 19 (2): 332–53.
Bensmail, H., and G. Celeux. 1996. “Regularized Gaussian Discriminant Analysis Through Eigenvalue Decomposition.” Journal of the American Statistical Association 91: 1743–48.
Biernacki, C., G. Celeux, and G. Govaert. 2000. “Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood.” IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (7): 719–25.
Biernacki, Christophe, Gilles Celeux, and Gérard Govaert. 2003. “Choosing Starting Values for the EM Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models.” Computational Statistics & Data Analysis 41 (3): 561–75.
Bishop, Christopher. 2006. Pattern Recognition and Machine Learning. New York: Springer-Verlag Inc.
Boldea, Otilia, and Jan R Magnus. 2009. “Maximum Likelihood Estimation of the Multivariate Normal Mixture Model.” Journal of the American Statistical Association 104 (488): 1539–49.
Bouveyron, Charles, Gilles Celeux, T. Brendan Murphy, and Adrian E. Raftery. 2019. Model-Based Clustering and Classification for Data Science: With Applications in r. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
Bowman, A. W., and A. Azzalini. 1997. Applied Smoothing Techniques for Data Analysis. Oxford: Oxford University Press.
Bowman, Adrian, Adelchi Azzalini. Ported to R by B. D. Ripley up to version 2.0, version 2.1 by Adrian Bowman, Adelchi Azzalini, and version 2.2 by Adrian Bowman. 2022. sm: Smoothing Methods for Nonparametric Regression and Density Estimation. https://CRAN.R-project.org/package=sm.
Box, G. E., and D. R. Cox. 1964. “An Analysis of Transformations.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 26 (2): 211–52.
Breiman, L., J. Friedman, R. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. New York: Wadsworth.
Brier, Glenn W. 1950. “Verification of Forecasts Expressed in Terms of Probability.” Monthly Weather Review 78 (1): 1–3.
Browne, Ryan P, and Paul D McNicholas. 2014. “Estimating Common Principal Components in High Dimensions.” Advances in Data Analysis and Classification 8 (2): 217–26.
Byers, Simon, and Adrian E Raftery. 1998. “Nearest-Neighbor Clutter Removal for Estimating Features in Spatial Point Processes.” Journal of the American Statistical Association 93 (442): 577–84.
Campbell, JG, Chris Fraley, Fionn Murtagh, and Adrian E Raftery. 1997. “Linear Flaw Detection in Woven Textiles Using Model-Based Clustering.” Pattern Recognition Letters 18 (14): 1539–48.
Campbell, Jonathan G, Chris Fraley, D Stanford, Fionn Murtagh, and Adrian E Raftery. 1999. “Model-Based Methods for Textile Fault Detection.” International Journal of Imaging Systems and Technology 10 (4): 339–46.
Cassie, Richard Morrison. 1954. “Some Uses of Probability Paper in the Analysis of Size Frequency Distributions.” Marine and Freshwater Research 5 (3): 513–22.
Celeux, G., and G. Govaert. 1995. Gaussian Parsimonious Clustering Models.” Pattern Recognition 28: 781–93.
Claeskens, Gerda, and Nils Lid Hjort. 2008. Model Selection and Model Averaging. Cambridge: Cambridge University Press.
Coomans, D, and I Broeckaert. 1986. Potential Pattern Recognition in Chemical and Medical Decision Making. Letchworth, England: Research Studies Press.
Coretto, Pietro, and Christian Hennig. 2016. “Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison with Other Methods for Robust Gaussian Clustering.” Journal of the American Statistical Association 111 (516): 1648–59.
Csárdi, Gábor. 2019. cranlogs: Download Logs from the ’RStudio’ ’CRAN’ Mirror. https://CRAN.R-project.org/package=cranlogs.
Czekanowski, J. 1909. “Zur Differential-Diagnose Der Neadertalgruppe.” Korrespondenz-Blatt Der Deutschen Geselleschaft Für Anthropologie, Ethnologie, Und Urgeschichte 40: 44–47.
Dasgupta, Abhijit, and Adrian E Raftery. 1998. “Detecting Features in Spatial Point Processes with Clutter via Model-Based Clustering.” Journal of the American Statistical Association 93 (441): 294–302.
Davis, J., and M. Goadrich. 2006. “The Relationship Between Precision-Recall and ROC Curves.” In Proceedings of the 23rd International Conference on Machine Learning, 233–40.
Dean, Nema, Thomas Brendan Murphy, and Gerard Downey. 2006. “Using Unlabelled Data to Update Classification Rules with Applications in Food Authenticity Studies.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 55 (1): 1–14.
Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum Likelihood from Incomplete Data via the EM Algorithm (with Discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 39: 1–38.
Dotto, Francesco, and Alessio Farcomeni. 2019. “Robust Inference for Parsimonious Model-Based Clustering.” Journal of Statistical Computation and Simulation 89 (3): 414–42.
Dua, Dheeru, and Casey Graff. 2017. UCI Machine Learning Repository.” University of California, Irvine, School of Information; Computer Sciences. http://archive.ics.uci.edu/ml.
Duong, Tarn. 2022. ks: Kernel Smoothing. https://CRAN.R-project.org/package=ks.
Efron, Bradley. 1979. “Bootstrap Methods: Another Look at the Jackknife.” Annals of Statistics 7: 1–26.
Escobar, Michael D, and Mike West. 1995. “Bayesian Density Estimation and Inference Using Mixtures.” Journal of the American Statistical Association 90 (430): 577–88.
Ferguson, Thomas. 1983. “Bayesian Density Estimation by Mixtures of Normal Distributions.” In Recent Advances in Statistics, edited by M. Haseeb Rizvi, Jagdish S. Rustagi, and David Siegmund, 287–302. Academic Press.
Flury, Bernard. 1997. A First Course in Multivariate Statistics. New York: Springer.
Flury, Bernhard. 1988. Common Principal Components & Related Multivariate Models. John Wiley & Sons, Inc.
Flury, Bernhard, and Hans Riedwyl. 1988. Multivariate Statistics: A Practical Approach. Chapman & Hall Ltd.
Forina, M., C. Armanino, M. Castino, and M. Ubigli. 1986. “Multivariate Data Analysis as a Discriminating Method of the Origin of Wines.” Vitis 25: 189–201. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/wine.
Forina, M., C. Armanino, S. Lanteri, and E. Tiscornia. 1983. “Classification of Olive Oils from Their Fatty Acid Composition.” In Food Research and Data Analysis, edited by H. Martens and H. Russwurm Jr., 189–214. London: Applied Science Publishers.
Fraley, Chris. 1998. “Algorithms for Model-Based Gaussian Hierarchical Clustering.” SIAM Journal on Scientific Computing 20 (1): 270–81.
Fraley, Chris, and Adrian E Raftery. 1999. MCLUST: Software for Model-Based Cluster Analysis.” Journal of Classification 16 (2): 297–306.
———. 2003. “Enhanced Model-Based Clustering, Density Estimation, and Discriminant Analysis Software: MCLUST.” Journal of Classification 20 (2): 263–86.
———. 2007. “Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering.” Journal of Classification 24 (2): 155–81.
Fraley, Chris, Adrian E. Raftery, Thomas Brendan Murphy, and Luca Scrucca. 2012. MCLUST Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation.” Technical Report 597. Department of Statistics, University of Washington.
Fraley, Chris, Adrian E. Raftery, and Luca Scrucca. 2022. mclust: Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Estimation. https://CRAN.R-project.org/package=mclust.
Fraley, C., and A. E. Raftery. 1998. “How Many Clusters? Which Clustering Method? Answers via Model-Based Cluster Analysis.” The Computer Journal 41: 578–88.
———. 2002. “Model-Based Clustering, Discriminant Analysis, and Density Estimation.” Journal of the American Statistical Association 97 (458): 611–31.
Fraley, C., A. E. Raftery, and R. Wehrens. 2005. “Incremental Model-Based Clustering for Large Datasets with Small Clusters.” Journal of Computational and Graphical Statistics 14 (3): 529–46.
Friedman, Herman P, and Jerrold Rubin. 1967. “On Some Invariant Criteria for Grouping Data.” Journal of the American Statistical Association 62 (320): 1159–78.
Frühwirth-Schnatter, Sylvia. 2006. Finite Mixture and Markov Switching Models. Springer.
Garcı́a-Escudero, Luis A., Alfonso Gordaliza, Carlos Matràn, and Agustin Mayo-Iscar. 2008. “A General Trimming Approach to Robust Cluster Analysis.” Annals of Statistics 36 (3): 1324–45.
Garcı́a-Escudero, Luis Angel, Alfonso Gordaliza, Carlos Matrán, and Agustı́n Mayo-Iscar. 2015. “Avoiding Spurious Local Maximizers in Mixture Modeling.” Statistics and Computing 25 (3): 619–33.
Gnanadesikan, R. 1977. Methods for Statistical Data Analysis of Multivariate Observations. New York: John Wiley & Sons.
Gneiting, Tilmann, and Adrian E Raftery. 2007. “Strictly Proper Scoring Rules, Prediction, and Estimation.” Journal of the American Statistical Association 102 (477): 359–78.
Grau, Jan, Ivo Grosse, and Jens Keilwagen. 2015. PRROC: Computing and Visualizing Precision-Recall and Receiver Operating Characteristic Curves in R.” Bioinformatics 31 (15): 2595–97.
Habbema, J D F, J. Hermans, and K van den Broek. 1974. “A Stepwise Discriminant Analysis Program Using Density Estimation.” In Proceedings in Computational Statistics, 101–10. Vienna: Physica-Verlag: COMPSTAT.
Habel, Kai, Raoul Grasman, Robert B. Gramacy, Pavlo Mozharovskyi, and David C. Sterratt. 2022. geometry: Mesh Generation and Surface Tessellation. https://CRAN.R-project.org/package=geometry.
Härdle, Wolfgang Karl. 1991. Smoothing Techniques: With Implementation in S. Springer Science & Business Media.
Hartigan, J. A. 1975. Clustering Algorithms. New York: John Wiley & Sons.
Hastie, Trevor, and Robert Tibshirani. 1996. “Discriminant Analysis by Gaussian Mixtures.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 58 (1): 155–76.
Hastie, T., R. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer-Verlag. http://www-stat.stanford.edu/%7Etibs/ElemStatLearn/.
Hathaway, Richard J. 1985. “A Constrained Formulation of Maximum-Likelihood Estimation for Normal Mixture Distributions.” Annals of Statistics 13: 795–800.
Heiberger, Richard M. 1978. “Algorithm AS 127: Generation of Random Orthogonal Matrices.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 27 (2): 199–206.
Hennig, Christian. 2010. “Methods for Merging Gaussian Mixture Components.” Advances in Data Analysis and Classification 4 (1): 3–34.
Hennig, Christian, and Bernhard Hausdorf. 2020. Prabclus: Functions for Clustering and Testing of Presence-Absence, Abundance and Multilocus Genetic Data. https://CRAN.R-project.org/package=prabclus.
Honaker, James, Gary King, and Matthew Blackwell. 2011. Amelia II: A Program for Missing Data.” Journal of Statistical Software 45 (7): 1–47. http://www.jstatsoft.org/v45/i07/.
Hubert, L., and P. Arabie. 1985. “Comparing Partitions.” Journal of Classification 2: 193–218.
Hurley, Catherine. 2019. gclus: Clustering Graphics. https://CRAN.R-project.org/package=gclus.
Hyndman, Rob J. 1996. “Computing and Graphing Highest Density Regions.” The American Statistician 50 (2): 120–26.
Ihaka, Ross, Paul Murrell, Kurt Hornik, Jason C. Fisher, Reto Stauffer, Claus O. Wilke, Claire D. McWhite, and Achim Zeileis. 2022. Colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes. https://doi.org/10.18637/jss.v096.i01.
Ingrassia, Salvatore, and Roberto Rocci. 2007. “Constrained Monotone EM Algorithms for Finite Mixture of Multivariate Gaussians.” Computational Statistics & Data Analysis 51 (11): 5339–51.
Izenman, Alan J, and Charles J Sommer. 1988. “Philatelic Mixtures and Multimodal Densities.” Journal of the American Statistical Association 83 (404): 941–53.
Kass, R. E., and A. E. Raftery. 1995. “Bayes Factors.” Journal of the American Statistical Association 90: 773–95.
Keilwagen, Jens, Ivo Grosse, and Jan Grau. 2014. “Area Under Precision-Recall Curves for Weighted and Unweighted Data.” PLOS ONE 9 (3).
Keribin, C. 2000. “Consistent Estimation of the Order of Mixture Models.” Sankhya Series A 62 (1): 49–66.
Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.” In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, 1137–43. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Konishi, Sadanori, and Genshiro Kitagawa. 2008. Information Criteria and Statistical Modeling. Springer Science & Business Media.
Kruppa, Jochen, Yufeng Liu, Gérard Biau, Michael Kohler, Inke R König, James D Malley, and Andreas Ziegler. 2014. “Probability Estimation with Machine Learning Methods for Dichotomous and Multicategory Outcome: Theory.” Biometrical Journal 56 (4): 534–63.
Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive Modeling. New York: Springer. https://doi.org/10.1007/978-1-4614-6849-3.
Langrognet, Florent, Remi Lebret, Christian Poli, Serge Iovleff, Benjamin Auder, and Serge Iovleff. 2022. Rmixmod: Classification with Mixture Modelling. https://CRAN.R-project.org/package=Rmixmod.
Lantz, Brett. 2019. Machine Learning with R: Expert Techniques for Predictive Modeling. 3rd ed. Packt Publishing.
Lazarsfeld, Paul F. 1950a. “The Logical and Mathematical Foundation of Latent Structure Analysis.” In Measurement and Prediction, Volume IV of the American Soldier: Studies in Social Psychology in World War II, edited by S. A. Stouffer. Princeton University Press.
———. 1950b. “The Logical and Mathematical Foundation of Latent Structure Analysis.” In Measurement and Prediction, edited by S. A. Stouffer, 362–412. Princeton University Press.
Little, Roderick JA, and Donald B Rubin. 2002. Statistical Analysis with Missing Data. 2nd ed. John Wiley & Sons.
Loader, C. 1999. Local Regression and Likelihood. New York: Springer Verlag.
Maechler, Martin, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt Hornik. 2022. cluster: Cluster Analysis Basics and Extensions. https://CRAN.R-project.org/package=cluster.
Mangasarian, Olvi L, W Nick Street, and William H Wolberg. 1995. “Breast Cancer Diagnosis and Prognosis via Linear Programming.” Operations Research 43 (4): 570–77.
Marron, J Steve, and Matt P Wand. 1992. “Exact Mean Integrated Squared Error.” Annals of Statistics 20 (2): 712–36.
McLachlan, G. J., and T. Krishnan. 2008. The EM Algorithm and Extensions. 2nd ed. Hoboken, New Jersey: Wiley-Interscience.
McLachlan, G. J., and D. Peel. 2000. Finite Mixture Models. New York: Wiley.
McLachlan, Geoffrey. 2004. Discriminant Analysis and Statistical Pattern Recognition. New York: John Wiley & Sons.
McLachlan, Geoffrey J. 1987. “On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture.” Applied Statistics 36: 318–24.
McLachlan, Geoffrey J, and Kaye E Basford. 1988. Mixture Models: Inference and Applications to Clustering. New York: Marcel Dekker Inc.
McLachlan, Geoffrey John. 1977. “Estimating the Linear Discriminant Function from Initial Samples Containing a Small Number of Unclassified Observations.” Journal of the American Statistical Association 72 (358): 403–6.
McLachlan, Geoffrey J, and Suren Rathnayake. 2014. “On the Number of Components in a Gaussian Mixture Model.” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 4 (5): 341–55.
McNeil, D. R. 1977. Interactive Data Analysis. New York: Wiley.
McNicholas, Paul D. 2016. Mixture Model-Based Classification. CRC Press.
McNicholas, Paul D., Aisha ElSherbiny, Aaron F. McDaid, and T. Brendan Murphy. 2022. pgmm: Parsimonious Gaussian Mixture Models. https://CRAN.R-project.org/package=pgmm.
Menardi, Giovanna, and Adelchi Azzalini. 2022. pdfCluster: Cluster Analysis via Nonparametric Density Estimation. https://CRAN.R-project.org/package=pdfCluster.
Meng, Xiao-Li, and Donald B Rubin. 1991. “Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm.” Journal of the American Statistical Association 86 (416): 899–909.
Morris, Katherine, and Paul D. McNicholas. 2013. “Dimension Reduction for Model-Based Clustering via Mixtures of Shifted Asymmetric Laplace Distributions.” Statistics & Probability Letters 83 (9): 2088–93. https://doi.org/http://dx.doi.org/10.1016/j.spl.2013.04.011.
———. 2016. “Clustering, Classification, Discriminant Analysis, and Dimension Reduction via Generalized Hyperbolic Mixtures.” Computational Statistics & Data Analysis 97: 133–50. https://doi.org/http://dx.doi.org/10.1016/j.csda.2015.10.008.
Morris, Katherine, PaulD. McNicholas, and Luca Scrucca. 2013. “Dimension Reduction for Model-Based Clustering via Mixtures of Multivariate t-Distributions.” Advances in Data Analysis and Classification 7 (3): 321–38. https://doi.org/10.1007/s11634-013-0137-3.
Murtagh, Fionn, and Adrian E Raftery. 1984. “Fitting Straight Lines to Point Patterns.” Pattern Recognition 17 (5): 479–83.
Neath, Andrew A., and Joseph E. Cavanaugh. 2012. “The Bayesian Information Criterion: Background, Derivation, and Applications.” Wiley Interdisciplinary Reviews: Computational Statistics 4 (2): 199–203. https://doi.org/10.1002/wics.199.
Newton, Michael A, and Adrian E Raftery. 1994. “Approximate Bayesian Inference with the Weighted Likelihood Bootstrap (with Discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 56: 3–48.
O’Hagan, Adrian, Thomas Brendan Murphy, Luca Scrucca, and Isobel Claire Gormley. 2019. “Investigation of Parameter Uncertainty in Clustering Using a Gaussian Mixture Model via Jackknife, Bootstrap and Weighted Likelihood Bootst Rap.” Computational Statistics 34 (4): 1779–1813. https://doi.org/10.1007/s00180-019-00897-9.
O’Neill, Terence J. 1978. “Normal Discrimination with Unclassified Observations.” Journal of the American Statistical Association 73 (364): 821–26.
Ogle, Derek. 2022. FSAdata: Fisheries Stock Analysis, Datasets.
Okabe, Masataka, and Kei Ito. 2008. “Color Universal Design (CUD) - How to Make Figures and Presentations That Are Friendly to Colorblind People.” J* Fly: Data Depository for Drosophila Researchers. https://jfly.uni-koeln.de/color/.
Peel, David, and Geoffrey J McLachlan. 2000. “Robust Mixture Modelling Using the t Distribution.” Statistics and Computing 10 (4): 339–48.
Posse, C. 2001. “Hierarchical Model-Based Clustering for Large Datasets.” Journal of Computational and Graphical Statistics 10 (3): 464–86.
Punzo, Antonio, and Paul D. McNicholas. 2016. “Parsimonious Mixtures of Multivariate Contaminated Normal Distributions.” Biometrical Journal 58 (6): 1506–37. https://doi.org/10.1002/bimj.201500144.
R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Raftery, Adrian E., and N. Dean. 2006. “Variable Selection for Model-Based Clustering.” Journal of the American Statistical Association 101 (473): 168–78.
Reaven, GM, and RG Miller. 1979. “An Attempt to Define the Nature of Chemical Diabetes Using a Multidimensional Analysis.” Diabetologia 16 (1): 17–24.
Richardson, Sylvia, and Peter J Green. 1997. “On Bayesian Analysis of Mixtures with an Unknown Number of Components (with Discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 59 (4): 731–92.
Ripley, Brian. 2022. MASS: Support Functions and Datasets for Venables and Ripley’s MASS. https://CRAN.R-project.org/package=MASS.
Roeder, Kathryn. 1990. “Density Estimation with Confidence Sets Exemplified by Superclusters and Voids in the Galaxies.” Journal of the American Statistical Association 85 (411): 617–24.
Roeder, K., and L. Wasserman. 1997. “Practical Bayesian Density Estimation Using Mixtures of Normals.” Journal of the American Statistical Association 92 (439): 894–902.
Saerens, Marco, Patrice Latinne, and Christine Decaestecker. 2002. “Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure.” Neural Computation 14 (1): 21–41.
Schafer, Joseph L. 1997. Analysis of Incomplete Multivariate Data. London: Chapman & Hall/CRC.
Schafer, Joseph L. 2022. mix: Estimation/Multiple Imputation for Mixed Categorical and Continuous Data. https://CRAN.R-project.org/package=mix.
Schwartz, G. 1978. “Estimating the Dimension of a Model.” Annals of Statistics 6: 31–38.
Scott, AJ, and Michael J Symons. 1971. “Clustering Methods Based on Likelihood Ratio Criteria.” Biometrics 27 (2): 387–97.
Scott, David W. 2009. Multivariate Density Estimation: Theory, Practice, and Visualization. 2nd ed. John Wiley & Sons.
Scrucca, L., and A. E. Raftery. 2015. “Improved Initialisation of Model-Based Clustering Using Gaussian Hierarchical Partitions.” Advances in Data Analysis and Classification 4 (9): 447–60. https://doi.org/10.1007/s11634-015-0220-z.
Scrucca, Luca. 2010. “Dimension Reduction for Model-Based Clustering.” Statistics and Computing 20 (4): 471–84. https://doi.org/10.1007/s11222-009-9138-7.
———. 2014. “Graphical Tools for Model-Based Mixture Discriminant Analysis.” Advances in Data Analysis and Classification 8 (2): 147–65. https://doi.org/10.1007/s11634-013-0147-1.
———. 2016. “Identifying Connected Components in Gaussian Finite Mixture Models for Clustering.” Computational Statistics & Data Analysis 93: 5–17. https://doi.org/10.1016/j.csda.2015.01.006.
———. 2019. “A Transformation-Based Approach to Gaussian Mixture Density Estimation for Bounded Data.” Biometrical Journal 61 (4): 1–16. https://doi.org/10.1002/bimj.201800174.
———. 2022. mclustAddons: Addons for the ’Mclust’ Package. https://CRAN.R-project.org/package=mclustAddons.
Scrucca, Luca, Michael Fop, Thomas Brendan Murphy, and Adrian E. Raftery. 2016. mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models.” The R Journal 8 (1): 205–33. https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf.
Scrucca, Luca, and Alessio Serafini. 2019. “Projection Pursuit Based on Gaussian Mixtures and Evolutionary Algorithms.” Journal of Computational and Graphical Statistics 28 (4): 847–60. https://doi.org/10.1080/10618600.2019.1598871.
Silverman, Bernard W. 1998. Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC.
Simonoff, J S. 1996. Smoothing Methods in Statistics. Springer.
Sing, T., O. Sander, N. Beerenwinkel, and T. Lengauer. 2005. ROCR: Visualizing Classifier Performance in R.” Bioinformatics 21 (20): 7881. http://rocr.bioinf.mpi-sb.mpg.de.
Stahl, D., and H. Sallis. 2012. “Model-Based Cluster Analysis.” Wiley Interdisciplinary Reviews: Computational Statistics 4 (4): 341–58. https://doi.org/10.1002/wics.1204.
Street, W Nick, William H Wolberg, and Olvi L Mangasarian. 1993. “Nuclear Feature Extraction for Breast Tumor Diagnosis.” In Biomedical Image Processing and Biomedical Visualization, 1905:861–70. International Society for Optics; Photonics.
Titterington, D Michael, Adrian FM Smith, and Udi E Makov. 1985. Statistical Analysis of Finite Mixture Distributions. Chichester; New York: John Wiley & Sons.
Todorov, Valentin. 2022. rrcov: Scalable Robust Estimators with High Breakdown Point. https://CRAN.R-project.org/package=rrcov.
Tortora, Cristina, Aisha ElSherbiny, Ryan P. Browne, Brian C. Franczak, and Paul D. McNicholas, and Donald D. Amos. 2022. MixGHD: Model Based Clustering, Classification and Discriminant Analysis Using the Mixture of Generalized Hyperbolic Distributions. https://CRAN.R-project.org/package=MixGHD.
Unwin, Antony. 2015. GDAdata: Datasets for the Book Graphical Data Analysis with R. https://CRAN.R-project.org/package=GDAdata.
van Buuren, Stef. 2012. Flexible Imputation of Missing Data. Chapman & Hall/CRC.
van Buuren, Stef, and Karin Groothuis-Oudshoorn. 2011. mice: Multivariate Imputation by Chained Equations in r.” Journal of Statistical Software 45 (3): 1–67. http://www.jstatsoft.org/v45/i03/.
Venables, William N., and Brian D. Ripley. 2013. Modern Applied Statistics with S-PLUS. Springer Science; Business Media.
Wand, Matt. 2021. KernSmooth: Functions for Kernel Smoothing Supporting Wand & Jones (1995). https://CRAN.R-project.org/package=KernSmooth.
Wang, Naisyin, and Adrian E Raftery. 2002. “Nearest Neighbor Variance Estimation (NNVE): Robust Covariance Estimation via Nearest Neighbor Cleaning (with Discussion).” Journal of the American Statistical Association 97 (460): 994–1019.
Wang, Naisyin, Adrian Raftery, and Chris Fraley. 2017. covRobust: Robust Covariance Estimation via Nearest Neighbor Cleaning. https://CRAN.R-project.org/package=covRobust.
Ward, Joe H. 1963. “Hierarchical Grouping to Optimize an Objective Function.” Journal of the American Statistical Association 58 (301): 236–44.
Wehrens, R., L. M. C. Buydens, C. Fraley, and A. E. Raftery. 2004. “Model-Based Clustering for Image Segmentation and Large Datasets via Sampling.” Journal of Classification 21 (2): 231–53.
Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. 2nd ed. New York: Springer-Verlag. http://ggplot2.org.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain Francois, Garrett Grolemund, et al. 2019. “Welcome to the tidyverse.” Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.
Wickham, Hadley, and Dianne Cook. 2022. tourr: Implement Tour Methods in r Code. https://CRAN.R-project.org/package=tourr.
Wickham, Hadley, and Lionel Henry. 2022. tidyr: Tidy Messy Data. https://doi.org/10.18637/jss.v059.i10.
Wilkinson, Leland. 2005. The Grammar of Graphics. New York: Springer-Verlag. https://doi.org/10.1007/0-387-28695-0.
Wolfe, John H. 1963. “Object Cluster Analysis of Social Areas.” PhD thesis, Berkeley: University of California.
———. 1965. “A Computer Program for the Maximum Likelihood Analysis of Types.” {USNPRA} {Technical} {Bulletin} 65-15. U.S. Naval Personnel Research Activity, San Diego, CA.
———. 1967. NORMIX: Computational Methods for Estimating the Parameters of Multivariate Normal Mixtures of Distributions.” Naval Personnel Research Activity San Diego CA.
———. 1970. “Pattern Clustering by Multivariate Mixture Analysis.” Multivariate Behavioral Research 5: 329–50.
Wong, Bang. 2011. “Points of View: Color Blindness.” Nature Methods 8 (441). https://doi.org/0.1038/nmeth.1618.
Zeileis, Achim, Jason C. Fisher, Kurt Hornik, Ross Ihaka, Claire D. McWhite, Paul Murrell, Reto Stauffer, and Claus O. Wilke. 2020. colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes.” Journal of Statistical Software 96 (1): 1–49. https://doi.org/10.18637/jss.v096.i01.
Zhu, Xiaojin, and Andrew B Goldberg. 2009. Introduction to Semi-Supervised Learning. Vol. 3. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers.