References
Allard, Denis, and Chris Fraley. 1997. “Nonparametric Maximum
Likelihood Estimation of Features in Spatial Point Processes Using
Voronoı̈ Tessellation.” Journal of
the American Statistical Association 92 (440): 1485–93.
Alpaydin, Ethem. 2014. Introduction to Machine Learning. 3rd
ed. MIT Press.
Altman, Edward I. 1968. “Financial Ratios, Discriminant Analysis
and the Prediction of Corporate Bankruptcy.” The Journal of
Finance 23 (4): 589–609.
Ameijeiras-Alonso, Jose, Rosa M. Crujeiras, Alberto Rodríguez-Casal, The
R Core Team 1996-2012, and The R Foundation 2005. 2021. multimode: Mode Testing and Exploring. https://CRAN.R-project.org/package=multimode.
Anderson, E. 1935. “The Irises of the
Gaspé Peninsula.”
Bulletin of the American Iris Society 59: 2–5.
Anderson, T. W., I. Olkin, and L. G. Underhill. 1987. “Generation
of Random Orthogonal Matrices.” SIAM Journal on Scientific
and Statistical Computing 8 (4): 625–29.
Arbel, Julyan, Guillaume Kon Kam King, Antonio Lijoi, Luis
Nieto-Barajas, and Igor Prünster. 2021. “BNPdensity:
Bayesian Nonparametric Mixture Modelling in R.”
Australian & New Zealand Journal of Statistics 63 (3):
542–64.
Azzalini, A, and A W Bowman. 1990. “A Look at Some Data on the Old
Faithful Geyser.” Applied Statistics 39 (3): 357–65.
Azzalini, Adelchi, and Giovanna Menardi. 2014. “Clustering via
Nonparametric Density Estimation: The R Package pdfCluster.” Journal of Statistical
Software 57 (11): 1–26. http://www.jstatsoft.org/v57/i11/.
Banfield, J., and Adrian E. Raftery. 1993. “Model-Based
Gaussian and Non-Gaussian Clustering.”
Biometrics 49: 803–21.
Barrios, Ernesto, Guillaume Kon Kam King, Antonio Lijoi, Luis E.
Nieto-Barajas, and Igor Prünster. 2021. BNPdensity:
Ferguson-Klass Type Algorithm for Posterior Normalized Random
Measures. https://doi.org/10.1111/anzs.12342.
Basford, K E, D R Greenway, G J McLachlan, and D Peel. 1997.
“Standard Errors of Fitted Component Means of Normal
Mixtures.” Computational Statistics 12 (1): 1–18.
Bates, Stephen, Trevor Hastie, and Robert Tibshirani. 2021.
“Cross-Validation: What Does It Estimate and How Well Does It Do
It?” arXiv Preprint. https://arxiv.org/abs/2104.00673.
Baudry, J. P., A. E. Raftery, G. Celeux, K. Lo, and R. Gottardo. 2010.
“Combining Mixture Components for Clustering.” Journal
of Computational and Graphical Statistics 19 (2): 332–53.
Bensmail, H., and G. Celeux. 1996. “Regularized
Gaussian Discriminant Analysis Through Eigenvalue
Decomposition.” Journal of the American Statistical
Association 91: 1743–48.
Biernacki, C., G. Celeux, and G. Govaert. 2000. “Assessing a
Mixture Model for Clustering with the Integrated Completed
Likelihood.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 22 (7): 719–25.
Biernacki, Christophe, Gilles Celeux, and Gérard Govaert. 2003.
“Choosing Starting Values for the EM Algorithm for
Getting the Highest Likelihood in Multivariate Gaussian
Mixture Models.” Computational Statistics & Data
Analysis 41 (3): 561–75.
Bishop, Christopher. 2006. Pattern Recognition and Machine
Learning. New York: Springer-Verlag Inc.
Boldea, Otilia, and Jan R Magnus. 2009. “Maximum Likelihood
Estimation of the Multivariate Normal Mixture Model.” Journal
of the American Statistical Association 104 (488): 1539–49.
Bouveyron, Charles, Gilles Celeux, T. Brendan Murphy, and Adrian E.
Raftery. 2019. Model-Based Clustering and Classification for Data
Science: With Applications in r. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge: Cambridge University Press.
Bowman, A. W., and A. Azzalini. 1997. Applied Smoothing Techniques
for Data Analysis. Oxford: Oxford University Press.
Bowman, Adrian, Adelchi Azzalini. Ported to R by B. D. Ripley up to
version 2.0, version 2.1 by Adrian Bowman, Adelchi Azzalini, and version
2.2 by Adrian Bowman. 2022. sm:
Smoothing Methods for Nonparametric Regression and Density
Estimation. https://CRAN.R-project.org/package=sm.
Box, G. E., and D. R. Cox. 1964. “An Analysis of
Transformations.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 26 (2): 211–52.
Breiman, L., J. Friedman, R. Olshen, and C. J. Stone. 1984.
Classification and Regression Trees. New York: Wadsworth.
Brier, Glenn W. 1950. “Verification of Forecasts Expressed in
Terms of Probability.” Monthly Weather Review 78 (1):
1–3.
Browne, Ryan P, and Paul D McNicholas. 2014. “Estimating Common
Principal Components in High Dimensions.” Advances in Data
Analysis and Classification 8 (2): 217–26.
Byers, Simon, and Adrian E Raftery. 1998. “Nearest-Neighbor
Clutter Removal for Estimating Features in Spatial Point
Processes.” Journal of the American Statistical
Association 93 (442): 577–84.
Campbell, JG, Chris Fraley, Fionn Murtagh, and Adrian E Raftery. 1997.
“Linear Flaw Detection in Woven Textiles Using Model-Based
Clustering.” Pattern Recognition Letters 18 (14):
1539–48.
Campbell, Jonathan G, Chris Fraley, D Stanford, Fionn Murtagh, and
Adrian E Raftery. 1999. “Model-Based Methods for Textile Fault
Detection.” International Journal of Imaging Systems and
Technology 10 (4): 339–46.
Cassie, Richard Morrison. 1954. “Some Uses of Probability Paper in
the Analysis of Size Frequency Distributions.” Marine and
Freshwater Research 5 (3): 513–22.
Celeux, G., and G. Govaert. 1995. “Gaussian
Parsimonious Clustering Models.” Pattern Recognition 28:
781–93.
Claeskens, Gerda, and Nils Lid Hjort. 2008. Model Selection and
Model Averaging. Cambridge: Cambridge University Press.
Coomans, D, and I Broeckaert. 1986. Potential Pattern Recognition in
Chemical and Medical Decision Making. Letchworth, England: Research
Studies Press.
Coretto, Pietro, and Christian Hennig. 2016. “Robust Improper
Maximum Likelihood: Tuning, Computation, and a Comparison
with Other Methods for Robust Gaussian Clustering.”
Journal of the American Statistical Association 111 (516):
1648–59.
Csárdi, Gábor. 2019. cranlogs: Download Logs
from the ’RStudio’ ’CRAN’ Mirror. https://CRAN.R-project.org/package=cranlogs.
Czekanowski, J. 1909. “Zur Differential-Diagnose Der
Neadertalgruppe.” Korrespondenz-Blatt Der
Deutschen Geselleschaft Für Anthropologie, Ethnologie, Und
Urgeschichte 40: 44–47.
Dasgupta, Abhijit, and Adrian E Raftery. 1998. “Detecting Features
in Spatial Point Processes with Clutter via Model-Based
Clustering.” Journal of the American Statistical
Association 93 (441): 294–302.
Davis, J., and M. Goadrich. 2006. “The Relationship Between
Precision-Recall and ROC Curves.” In Proceedings
of the 23rd International Conference on Machine Learning, 233–40.
Dean, Nema, Thomas Brendan Murphy, and Gerard Downey. 2006. “Using
Unlabelled Data to Update Classification Rules with Applications in Food
Authenticity Studies.” Journal of the Royal Statistical
Society: Series C (Applied Statistics) 55 (1): 1–14.
Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum
Likelihood from Incomplete Data via the EM Algorithm (with
Discussion).” Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 39: 1–38.
Dotto, Francesco, and Alessio Farcomeni. 2019. “Robust Inference
for Parsimonious Model-Based Clustering.” Journal of
Statistical Computation and Simulation 89 (3): 414–42.
Dua, Dheeru, and Casey Graff. 2017. “UCI
Machine Learning
Repository.” University of California, Irvine,
School of Information; Computer Sciences. http://archive.ics.uci.edu/ml.
Duong, Tarn. 2022. ks: Kernel
Smoothing. https://CRAN.R-project.org/package=ks.
Efron, Bradley. 1979. “Bootstrap Methods: Another Look at the
Jackknife.” Annals of Statistics 7: 1–26.
Escobar, Michael D, and Mike West. 1995. “Bayesian Density
Estimation and Inference Using Mixtures.” Journal of the
American Statistical Association 90 (430): 577–88.
Ferguson, Thomas. 1983. “Bayesian Density Estimation by Mixtures
of Normal Distributions.” In Recent Advances in
Statistics, edited by M. Haseeb Rizvi, Jagdish S. Rustagi, and
David Siegmund, 287–302. Academic Press.
Flury, Bernard. 1997. A First Course in Multivariate
Statistics. New York: Springer.
Flury, Bernhard. 1988. Common Principal Components & Related
Multivariate Models. John Wiley & Sons, Inc.
Flury, Bernhard, and Hans Riedwyl. 1988. Multivariate Statistics: A
Practical Approach. Chapman & Hall Ltd.
Forina, M., C. Armanino, M. Castino, and M. Ubigli. 1986.
“Multivariate Data Analysis as a Discriminating Method of the
Origin of Wines.” Vitis 25: 189–201. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/wine.
Forina, M., C. Armanino, S. Lanteri, and E. Tiscornia. 1983.
“Classification of Olive Oils from Their Fatty Acid
Composition.” In Food Research and Data Analysis, edited
by H. Martens and H. Russwurm Jr., 189–214. London: Applied Science
Publishers.
Fraley, Chris. 1998. “Algorithms for Model-Based
Gaussian Hierarchical Clustering.”
SIAM Journal on Scientific Computing 20 (1):
270–81.
Fraley, Chris, and Adrian E Raftery. 1999. “MCLUST:
Software for Model-Based Cluster Analysis.” Journal of
Classification 16 (2): 297–306.
———. 2003. “Enhanced Model-Based Clustering, Density Estimation,
and Discriminant Analysis Software: MCLUST.”
Journal of Classification 20 (2): 263–86.
———. 2007. “Bayesian Regularization for Normal Mixture Estimation
and Model-Based Clustering.” Journal of Classification
24 (2): 155–81.
Fraley, Chris, Adrian E. Raftery, Thomas Brendan Murphy, and Luca
Scrucca. 2012. “MCLUST Version 4 for R:
Normal Mixture Modeling for Model-Based Clustering, Classification, and
Density Estimation.” Technical Report 597. Department of
Statistics, University of Washington.
Fraley, Chris, Adrian E. Raftery, and Luca Scrucca. 2022. mclust: Gaussian Mixture Modelling for Model-Based
Clustering, Classification, and Density Estimation. https://CRAN.R-project.org/package=mclust.
Fraley, C., and A. E. Raftery. 1998. “How Many Clusters?
Which Clustering Method? Answers via
Model-Based Cluster Analysis.” The Computer Journal 41:
578–88.
———. 2002. “Model-Based Clustering, Discriminant Analysis, and
Density Estimation.” Journal of the American Statistical
Association 97 (458): 611–31.
Fraley, C., A. E. Raftery, and R. Wehrens. 2005. “Incremental
Model-Based Clustering for Large Datasets with Small Clusters.”
Journal of Computational and Graphical Statistics 14 (3):
529–46.
Friedman, Herman P, and Jerrold Rubin. 1967. “On Some Invariant
Criteria for Grouping Data.” Journal of the American
Statistical Association 62 (320): 1159–78.
Frühwirth-Schnatter, Sylvia. 2006. Finite Mixture and Markov
Switching Models. Springer.
Garcı́a-Escudero, Luis A., Alfonso Gordaliza, Carlos Matràn, and Agustin
Mayo-Iscar. 2008. “A General Trimming Approach to Robust Cluster
Analysis.” Annals of Statistics 36 (3): 1324–45.
Garcı́a-Escudero, Luis Angel, Alfonso Gordaliza, Carlos Matrán, and
Agustı́n Mayo-Iscar. 2015. “Avoiding Spurious Local Maximizers in
Mixture Modeling.” Statistics and Computing 25 (3):
619–33.
Gnanadesikan, R. 1977. Methods for Statistical Data Analysis of
Multivariate Observations. New York: John Wiley & Sons.
Gneiting, Tilmann, and Adrian E Raftery. 2007. “Strictly Proper
Scoring Rules, Prediction, and Estimation.” Journal of the
American Statistical Association 102 (477): 359–78.
Grau, Jan, Ivo Grosse, and Jens Keilwagen. 2015.
“PRROC: Computing and Visualizing Precision-Recall
and Receiver Operating Characteristic Curves in R.”
Bioinformatics 31 (15): 2595–97.
Habbema, J D F, J. Hermans, and K van den Broek. 1974. “A Stepwise
Discriminant Analysis Program Using Density Estimation.” In
Proceedings in Computational Statistics, 101–10. Vienna:
Physica-Verlag: COMPSTAT.
Habel, Kai, Raoul Grasman, Robert B. Gramacy, Pavlo Mozharovskyi, and
David C. Sterratt. 2022. geometry: Mesh
Generation and Surface Tessellation. https://CRAN.R-project.org/package=geometry.
Härdle, Wolfgang Karl. 1991. Smoothing Techniques: With
Implementation in S. Springer Science & Business
Media.
Hartigan, J. A. 1975. Clustering Algorithms. New York: John
Wiley & Sons.
Hastie, Trevor, and Robert Tibshirani. 1996. “Discriminant
Analysis by Gaussian Mixtures.” Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 58
(1): 155–76.
Hastie, T., R. Tibshirani, and J. H. Friedman. 2009. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. 2nd
ed. Springer-Verlag. http://www-stat.stanford.edu/%7Etibs/ElemStatLearn/.
Hathaway, Richard J. 1985. “A Constrained Formulation of
Maximum-Likelihood Estimation for Normal Mixture Distributions.”
Annals of Statistics 13: 795–800.
Heiberger, Richard M. 1978. “Algorithm AS 127:
Generation of Random Orthogonal Matrices.” Journal of the
Royal Statistical Society. Series C (Applied Statistics) 27 (2):
199–206.
Hennig, Christian. 2010. “Methods for Merging
Gaussian Mixture Components.” Advances in Data
Analysis and Classification 4 (1): 3–34.
Hennig, Christian, and Bernhard Hausdorf. 2020. Prabclus: Functions
for Clustering and Testing of Presence-Absence, Abundance and Multilocus
Genetic Data. https://CRAN.R-project.org/package=prabclus.
Honaker, James, Gary King, and Matthew Blackwell. 2011.
“Amelia II: A Program for Missing Data.”
Journal of Statistical Software 45 (7): 1–47. http://www.jstatsoft.org/v45/i07/.
Hubert, L., and P. Arabie. 1985. “Comparing Partitions.”
Journal of Classification 2: 193–218.
Hurley, Catherine. 2019. gclus:
Clustering Graphics. https://CRAN.R-project.org/package=gclus.
Hyndman, Rob J. 1996. “Computing and Graphing Highest Density
Regions.” The American Statistician 50 (2): 120–26.
Ihaka, Ross, Paul Murrell, Kurt Hornik, Jason C. Fisher, Reto Stauffer,
Claus O. Wilke, Claire D. McWhite, and Achim Zeileis. 2022.
Colorspace: A Toolbox for Manipulating and Assessing Colors and
Palettes. https://doi.org/10.18637/jss.v096.i01.
Ingrassia, Salvatore, and Roberto Rocci. 2007. “Constrained
Monotone EM Algorithms for Finite Mixture of Multivariate
Gaussians.” Computational Statistics & Data
Analysis 51 (11): 5339–51.
Izenman, Alan J, and Charles J Sommer. 1988. “Philatelic Mixtures
and Multimodal Densities.” Journal of the American
Statistical Association 83 (404): 941–53.
Kass, R. E., and A. E. Raftery. 1995. “Bayes Factors.”
Journal of the American Statistical Association 90: 773–95.
Keilwagen, Jens, Ivo Grosse, and Jan Grau. 2014. “Area Under
Precision-Recall Curves for Weighted and Unweighted Data.”
PLOS ONE 9 (3).
Keribin, C. 2000. “Consistent Estimation of the Order of Mixture
Models.” Sankhya Series A 62 (1): 49–66.
Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection.” In Proceedings of
the 14th International Joint Conference on Artificial Intelligence -
Volume 2, 1137–43. IJCAI’95. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Konishi, Sadanori, and Genshiro Kitagawa. 2008. Information Criteria
and Statistical Modeling. Springer Science & Business Media.
Kruppa, Jochen, Yufeng Liu, Gérard Biau, Michael Kohler, Inke R König,
James D Malley, and Andreas Ziegler. 2014. “Probability Estimation
with Machine Learning Methods for Dichotomous and Multicategory Outcome:
Theory.” Biometrical Journal 56 (4): 534–63.
Kuhn, Max, and Kjell Johnson. 2013. Applied Predictive
Modeling. New York: Springer. https://doi.org/10.1007/978-1-4614-6849-3.
Langrognet, Florent, Remi Lebret, Christian Poli, Serge Iovleff,
Benjamin Auder, and Serge Iovleff. 2022. Rmixmod:
Classification with Mixture Modelling. https://CRAN.R-project.org/package=Rmixmod.
Lantz, Brett. 2019. Machine Learning with R: Expert
Techniques for Predictive Modeling. 3rd ed. Packt Publishing.
Lazarsfeld, Paul F. 1950a. “The Logical and Mathematical
Foundation of Latent Structure Analysis.” In Measurement and
Prediction, Volume IV of the American Soldier: Studies in Social
Psychology in World War II, edited by S. A. Stouffer. Princeton
University Press.
———. 1950b. “The Logical and Mathematical Foundation of Latent
Structure Analysis.” In Measurement and Prediction,
edited by S. A. Stouffer, 362–412. Princeton University Press.
Little, Roderick JA, and Donald B Rubin. 2002. Statistical Analysis
with Missing Data. 2nd ed. John Wiley & Sons.
Loader, C. 1999. Local Regression and Likelihood. New York:
Springer Verlag.
Maechler, Martin, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt
Hornik. 2022. cluster: Cluster Analysis
Basics and Extensions. https://CRAN.R-project.org/package=cluster.
Mangasarian, Olvi L, W Nick Street, and William H Wolberg. 1995.
“Breast Cancer Diagnosis and Prognosis via Linear
Programming.” Operations Research 43 (4): 570–77.
Marron, J Steve, and Matt P Wand. 1992. “Exact Mean Integrated
Squared Error.” Annals of Statistics 20 (2): 712–36.
McLachlan, G. J., and T. Krishnan. 2008. The EM
Algorithm and Extensions. 2nd ed. Hoboken, New Jersey:
Wiley-Interscience.
McLachlan, G. J., and D. Peel. 2000. Finite Mixture Models. New
York: Wiley.
McLachlan, Geoffrey. 2004. Discriminant Analysis and Statistical
Pattern Recognition. New York: John Wiley & Sons.
McLachlan, Geoffrey J. 1987. “On Bootstrapping the Likelihood
Ratio Test Statistic for the Number of Components in a Normal
Mixture.” Applied Statistics 36: 318–24.
McLachlan, Geoffrey J, and Kaye E Basford. 1988. Mixture Models:
Inference and Applications to Clustering. New York: Marcel Dekker
Inc.
McLachlan, Geoffrey John. 1977. “Estimating the Linear
Discriminant Function from Initial Samples Containing a Small Number of
Unclassified Observations.” Journal of the American
Statistical Association 72 (358): 403–6.
McLachlan, Geoffrey J, and Suren Rathnayake. 2014. “On the Number
of Components in a Gaussian Mixture Model.”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 4 (5): 341–55.
McNeil, D. R. 1977. Interactive Data Analysis. New York: Wiley.
McNicholas, Paul D. 2016. Mixture Model-Based Classification.
CRC Press.
McNicholas, Paul D., Aisha ElSherbiny, Aaron F. McDaid, and T. Brendan
Murphy. 2022. pgmm: Parsimonious
Gaussian Mixture Models. https://CRAN.R-project.org/package=pgmm.
Menardi, Giovanna, and Adelchi Azzalini. 2022. pdfCluster: Cluster Analysis via Nonparametric
Density Estimation. https://CRAN.R-project.org/package=pdfCluster.
Meng, Xiao-Li, and Donald B Rubin. 1991. “Using EM to
Obtain Asymptotic Variance-Covariance Matrices: The SEM
Algorithm.” Journal of the American Statistical
Association 86 (416): 899–909.
Morris, Katherine, and Paul D. McNicholas. 2013. “Dimension
Reduction for Model-Based Clustering via Mixtures of Shifted Asymmetric
Laplace Distributions.” Statistics &
Probability Letters 83 (9): 2088–93. https://doi.org/http://dx.doi.org/10.1016/j.spl.2013.04.011.
———. 2016. “Clustering, Classification, Discriminant Analysis, and
Dimension Reduction via Generalized Hyperbolic Mixtures.”
Computational Statistics & Data Analysis 97: 133–50.
https://doi.org/http://dx.doi.org/10.1016/j.csda.2015.10.008.
Morris, Katherine, PaulD. McNicholas, and Luca Scrucca. 2013.
“Dimension Reduction for Model-Based Clustering via Mixtures of
Multivariate t-Distributions.” Advances in Data Analysis and
Classification 7 (3): 321–38. https://doi.org/10.1007/s11634-013-0137-3.
Murtagh, Fionn, and Adrian E Raftery. 1984. “Fitting Straight
Lines to Point Patterns.” Pattern Recognition 17 (5):
479–83.
Neath, Andrew A., and Joseph E. Cavanaugh. 2012. “The
Bayesian Information Criterion: Background, Derivation, and
Applications.” Wiley Interdisciplinary Reviews: Computational
Statistics 4 (2): 199–203. https://doi.org/10.1002/wics.199.
Newton, Michael A, and Adrian E Raftery. 1994. “Approximate
Bayesian Inference with the Weighted Likelihood Bootstrap
(with Discussion).” Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 56: 3–48.
O’Hagan, Adrian, Thomas Brendan Murphy, Luca Scrucca, and Isobel Claire
Gormley. 2019. “Investigation of Parameter Uncertainty in
Clustering Using a Gaussian Mixture Model via Jackknife,
Bootstrap and Weighted Likelihood Bootst Rap.” Computational
Statistics 34 (4): 1779–1813. https://doi.org/10.1007/s00180-019-00897-9.
O’Neill, Terence J. 1978. “Normal Discrimination with Unclassified
Observations.” Journal of the American Statistical
Association 73 (364): 821–26.
Ogle, Derek. 2022. FSAdata: Fisheries Stock Analysis,
Datasets.
Okabe, Masataka, and Kei Ito. 2008. “Color Universal Design
(CUD) - How to Make Figures and Presentations That Are
Friendly to Colorblind People.” J* Fly: Data Depository for
Drosophila Researchers. https://jfly.uni-koeln.de/color/.
Peel, David, and Geoffrey J McLachlan. 2000. “Robust Mixture
Modelling Using the t
Distribution.” Statistics and Computing 10 (4): 339–48.
Posse, C. 2001. “Hierarchical Model-Based Clustering for Large
Datasets.” Journal of Computational and Graphical
Statistics 10 (3): 464–86.
Punzo, Antonio, and Paul D. McNicholas. 2016. “Parsimonious
Mixtures of Multivariate Contaminated Normal Distributions.”
Biometrical Journal 58 (6): 1506–37. https://doi.org/10.1002/bimj.201500144.
R Core Team. 2022. R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation
for Statistical Computing. https://www.R-project.org/.
Raftery, Adrian E., and N. Dean. 2006. “Variable Selection for
Model-Based Clustering.” Journal of the American Statistical
Association 101 (473): 168–78.
Reaven, GM, and RG Miller. 1979. “An Attempt to Define the Nature
of Chemical Diabetes Using a Multidimensional Analysis.”
Diabetologia 16 (1): 17–24.
Richardson, Sylvia, and Peter J Green. 1997. “On
Bayesian Analysis of Mixtures with an Unknown Number of
Components (with Discussion).” Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 59 (4):
731–92.
Ripley, Brian. 2022. MASS: Support Functions and
Datasets for Venables and Ripley’s MASS. https://CRAN.R-project.org/package=MASS.
Roeder, Kathryn. 1990. “Density Estimation with Confidence Sets
Exemplified by Superclusters and Voids in the Galaxies.”
Journal of the American Statistical Association 85 (411):
617–24.
Roeder, K., and L. Wasserman. 1997. “Practical
Bayesian Density Estimation Using Mixtures of
Normals.” Journal of the American Statistical
Association 92 (439): 894–902.
Saerens, Marco, Patrice Latinne, and Christine Decaestecker. 2002.
“Adjusting the Outputs of a Classifier to New a Priori
Probabilities: A Simple Procedure.” Neural Computation
14 (1): 21–41.
Schafer, Joseph L. 1997. Analysis of Incomplete Multivariate
Data. London: Chapman & Hall/CRC.
Schafer, Joseph L. 2022. mix:
Estimation/Multiple Imputation for Mixed Categorical and Continuous
Data. https://CRAN.R-project.org/package=mix.
Schwartz, G. 1978. “Estimating the Dimension of a Model.”
Annals of Statistics 6: 31–38.
Scott, AJ, and Michael J Symons. 1971. “Clustering Methods Based
on Likelihood Ratio Criteria.” Biometrics 27 (2):
387–97.
Scott, David W. 2009. Multivariate Density Estimation: Theory,
Practice, and Visualization. 2nd ed. John Wiley & Sons.
Scrucca, L., and A. E. Raftery. 2015. “Improved Initialisation of
Model-Based Clustering Using Gaussian Hierarchical
Partitions.” Advances in Data Analysis and
Classification 4 (9): 447–60. https://doi.org/10.1007/s11634-015-0220-z.
Scrucca, Luca. 2010. “Dimension Reduction for Model-Based
Clustering.” Statistics and Computing 20 (4): 471–84. https://doi.org/10.1007/s11222-009-9138-7.
———. 2014. “Graphical Tools for Model-Based Mixture Discriminant
Analysis.” Advances in Data Analysis and Classification
8 (2): 147–65. https://doi.org/10.1007/s11634-013-0147-1.
———. 2016. “Identifying Connected Components in
Gaussian Finite Mixture Models for Clustering.”
Computational Statistics & Data Analysis 93: 5–17. https://doi.org/10.1016/j.csda.2015.01.006.
———. 2019. “A Transformation-Based Approach to
Gaussian Mixture Density Estimation for Bounded
Data.” Biometrical Journal 61 (4): 1–16. https://doi.org/10.1002/bimj.201800174.
———. 2022. mclustAddons: Addons for the
’Mclust’ Package. https://CRAN.R-project.org/package=mclustAddons.
Scrucca, Luca, Michael Fop, Thomas Brendan Murphy, and Adrian E.
Raftery. 2016. “mclust 5: Clustering,
Classification and Density Estimation Using Gaussian Finite
Mixture Models.” The R Journal 8 (1):
205–33. https://journal.r-project.org/archive/2016-1/scrucca-fop-murphy-etal.pdf.
Scrucca, Luca, and Alessio Serafini. 2019. “Projection Pursuit
Based on Gaussian Mixtures and Evolutionary
Algorithms.” Journal of Computational and Graphical
Statistics 28 (4): 847–60. https://doi.org/10.1080/10618600.2019.1598871.
Silverman, Bernard W. 1998. Density Estimation for Statistics and
Data Analysis. Chapman & Hall/CRC.
Simonoff, J S. 1996. Smoothing Methods in Statistics. Springer.
Sing, T., O. Sander, N. Beerenwinkel, and T. Lengauer. 2005.
“ROCR: Visualizing Classifier Performance in
R.” Bioinformatics 21 (20): 7881. http://rocr.bioinf.mpi-sb.mpg.de.
Stahl, D., and H. Sallis. 2012. “Model-Based Cluster
Analysis.” Wiley Interdisciplinary Reviews: Computational
Statistics 4 (4): 341–58. https://doi.org/10.1002/wics.1204.
Street, W Nick, William H Wolberg, and Olvi L Mangasarian. 1993.
“Nuclear Feature Extraction for Breast Tumor Diagnosis.” In
Biomedical Image Processing and Biomedical Visualization,
1905:861–70. International Society for Optics; Photonics.
Titterington, D Michael, Adrian FM Smith, and Udi E Makov. 1985.
Statistical Analysis of Finite Mixture Distributions.
Chichester; New York: John Wiley & Sons.
Todorov, Valentin. 2022. rrcov: Scalable
Robust Estimators with High Breakdown Point. https://CRAN.R-project.org/package=rrcov.
Tortora, Cristina, Aisha ElSherbiny, Ryan P. Browne, Brian C. Franczak,
and Paul D. McNicholas, and Donald D. Amos. 2022.
MixGHD: Model Based Clustering, Classification and
Discriminant Analysis Using the Mixture of Generalized Hyperbolic
Distributions. https://CRAN.R-project.org/package=MixGHD.
Unwin, Antony. 2015. GDAdata: Datasets for the Book
Graphical Data Analysis with R. https://CRAN.R-project.org/package=GDAdata.
van Buuren, Stef. 2012. Flexible Imputation of Missing Data.
Chapman & Hall/CRC.
van Buuren, Stef, and Karin Groothuis-Oudshoorn. 2011. “mice: Multivariate Imputation by Chained Equations
in r.” Journal of Statistical Software 45 (3): 1–67. http://www.jstatsoft.org/v45/i03/.
Venables, William N., and Brian D. Ripley. 2013. Modern Applied
Statistics with S-PLUS. Springer Science; Business
Media.
Wand, Matt. 2021. KernSmooth: Functions for Kernel
Smoothing Supporting Wand & Jones (1995). https://CRAN.R-project.org/package=KernSmooth.
Wang, Naisyin, and Adrian E Raftery. 2002. “Nearest Neighbor
Variance Estimation (NNVE): Robust Covariance Estimation
via Nearest Neighbor Cleaning (with Discussion).” Journal of
the American Statistical Association 97 (460): 994–1019.
Wang, Naisyin, Adrian Raftery, and Chris Fraley. 2017. covRobust: Robust Covariance Estimation via
Nearest Neighbor Cleaning. https://CRAN.R-project.org/package=covRobust.
Ward, Joe H. 1963. “Hierarchical Grouping to Optimize an Objective
Function.” Journal of the American Statistical
Association 58 (301): 236–44.
Wehrens, R., L. M. C. Buydens, C. Fraley, and A. E. Raftery. 2004.
“Model-Based Clustering for Image Segmentation and Large Datasets
via Sampling.” Journal of Classification 21 (2): 231–53.
Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data
Analysis. 2nd ed. New York: Springer-Verlag. http://ggplot2.org.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy
D’Agostino McGowan, Romain Francois, Garrett Grolemund, et al. 2019.
“Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.
Wickham, Hadley, and Dianne Cook. 2022. tourr: Implement Tour Methods in r Code. https://CRAN.R-project.org/package=tourr.
Wickham, Hadley, and Lionel Henry. 2022. tidyr: Tidy Messy Data. https://doi.org/10.18637/jss.v059.i10.
Wilkinson, Leland. 2005. The Grammar of Graphics. New York:
Springer-Verlag. https://doi.org/10.1007/0-387-28695-0.
Wolfe, John H. 1963. “Object Cluster Analysis of Social
Areas.” PhD thesis, Berkeley: University of California.
———. 1965. “A Computer Program for the Maximum Likelihood Analysis
of Types.” {USNPRA} {Technical} {Bulletin} 65-15. U.S. Naval
Personnel Research Activity, San Diego, CA.
———. 1967. “NORMIX: Computational Methods for
Estimating the Parameters of Multivariate Normal Mixtures of
Distributions.” Naval Personnel Research Activity San Diego CA.
———. 1970. “Pattern Clustering by Multivariate Mixture
Analysis.” Multivariate Behavioral Research 5: 329–50.
Wong, Bang. 2011. “Points of View: Color Blindness.”
Nature Methods 8 (441). https://doi.org/0.1038/nmeth.1618.
Zeileis, Achim, Jason C. Fisher, Kurt Hornik, Ross Ihaka, Claire D.
McWhite, Paul Murrell, Reto Stauffer, and Claus O. Wilke. 2020.
“colorspace: A Toolbox for
Manipulating and Assessing Colors and Palettes.” Journal of
Statistical Software 96 (1): 1–49. https://doi.org/10.18637/jss.v096.i01.
Zhu, Xiaojin, and Andrew B Goldberg. 2009. Introduction to
Semi-Supervised Learning. Vol. 3. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers.